Skip to main content

Machine Learning Based Diabetic Retinopathy Detection and Classification

  • Chapter
  • First Online:
Intelligent Multimedia Signal Processing for Smart Ecosystems

Abstract

Diabetic retinopathy is a common disease among people with diabetes. Early stage diagnosis and treatment of diabetic retinopathy are essential to prevent the progression of diabetic retinopathy to the point of irreversible effects on vision. The diagnosis of diabetic retinopathy currently relies on analyzing fundus images by experienced physicians. However, due to the current global imbalance in healthcare resources, lack of healthcare in many regions, and the fact that 80% of diabetic patients are from low-income or middle-income countries call for computer-aided diagnosis to provide urgently needed help for diabetic retinopathy patients. This chapter aims to discuss machine learning-based diabetic retinopathy diagnosis. The fundus imaging tools and the open-domain datasets that can be used for diabetic retinopathy-related research are introduced. A variety of methods for diagnosis based on machine learning are also introduced, including detection methods for exudate and microaneurysm, classification methods for diabetic retinopathy with different severity scales, and segmentation methods for optic disk and blood vessel. Thereafter, we discuss the application of machine learning models to real-life scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan JCN, Lim LL, Wareham NJ, Shaw JE, Orchard TJ, Zhang P et al (2020) The lancet commission on diabetes: using data to transform diabetes care and patient lives. Lancet 396(10267):2019–2082

    Article  Google Scholar 

  2. Cheung N, Mitchell P, Wong TY (2010) Seminar diabetic retinopathy. Lancet [Internet] 376:124–136. Available from: www.thelancet.com. [cited 2019 Dec 12]

    Article  Google Scholar 

  3. Mookiah MRK, Acharya UR, Chua CK, Lim CM, Ng EYK, Laude A (2013) Computer-aided diagnosis of diabetic retinopathy: a review. Comput Biol Med 43:2136–2155

    Article  Google Scholar 

  4. Peng JJ, Xiong SQ, Ding LX, Peng J, Xia XB (2019) Diabetic retinopathy: focus on NADPH oxidase and its potential as therapeutic target. Eur J Pharmacol 853:381–387

    Article  Google Scholar 

  5. Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M et al (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9):1677–1682

    Article  Google Scholar 

  6. Tsiknakis N, Theodoropoulos D, Manikis G, Ktistakis E, Boutsora O, Berto A et al (2021) Deep learning for diabetic retinopathy detection and classification based on fundus images: a review. Comput Biol Med [Internet] 135:104599. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0010482521003930. [cited 2021 Jul 28]

    Article  Google Scholar 

  7. Fourcade A, Khonsari RH (2019) Deep learning in medical image analysis: a third eye for doctors. J Stomatol Oral Maxillofac Surg [Internet] 120(4):279–288. Available from: https://doi.org/10.1016/j.jormas.2019.06.002

    Article  Google Scholar 

  8. Li T, Bo W, Hu C, Kang H, Liu H, Wang K et al (2021) Applications of deep learning in fundus images: a review. Med Image Anal 69:101971

    Article  Google Scholar 

  9. Kohner EM, Dollery CT (1970) Fluorescein angiography of the fundus in diabetic retinopathy. Br Med Bull [Internet] 26(2):166–170. Available from: https://academic.oup.com/bmb/article/26/2/166/262348. [cited 2022 Jul 26]

    Article  Google Scholar 

  10. Hormel TT, Hwang TS, Bailey ST, Wilson DJ, Huang D, Jia Y (2021) Artificial intelligence in OCT angiography. Prog Retin Eye Res 85:100965

    Article  Google Scholar 

  11. Bélanger Nzakimuena C. Automated analysis of retinal and choroidal OCT and OCTA images in AMD. 2020;

    Google Scholar 

  12. Hurrah NN, Loan NA, Parah SA, Sheikh JA, Muhammad K, de Macedo ARL et al (2021) INDFORG: industrial forgery detection using automatic rotation angle detection and correction. IEEE Trans Industr Inform 17(5):3630–3639

    Article  Google Scholar 

  13. Hurrah NN, Parah SA, Sheikh JA, Al-Turjman F, Muhammad K (2019) Secure data transmission framework for confidentiality in IoTs. Ad Hoc Netw 95:101989

    Article  Google Scholar 

  14. Afzal I, Parah SA, Hurrah NN, Song OY (2020) Secure patient data transmission on resource constrained platform. Multimed Tools Appl [Internet]:1–26. Available from: https://link.springer.com/article/10.1007/s11042-020-09139-3. [cited 2022 Sep 19]

  15. Kaur A, Rashid M, Bashir AK, Parah SA (2022) Detection of breast cancer masses in mammogram images with watershed segmentation and machine learning approach. Artif Intell Innov Healthcare Inform [Internet]:35–60. Available from: https://link.springer.com/chapter/10.1007/978-3-030-96569-3_2. [cited 2022 Sep 19]

  16. Hacisoftaoglu RE, Karakaya M, Sallam AB (2020) Deep learning frameworks for diabetic retinopathy detection with smartphone-based retinal imaging systems. Pattern Recogn Lett 135:409–417

    Article  Google Scholar 

  17. Bhat GM, Mustafa M, Parah SA, Ahmad J (2010) Field programmable gate array (FPGA) implementation of novel complex PN-code-generator-based data scrambler and descrambler. Maejo Int J Sci Technol 4(1):125–135

    Google Scholar 

  18. Bhat GM, Mustafa M, Ahmad S, Ahmad J (2009) VHDL modeling and simulation of data scrambler and descrambler for secure data communication. Indian J Sci Technol 2(10):41–44

    Article  Google Scholar 

  19. Cortes C, Vapnik V, Saitta L (1995) Support-vector networks. Mach Learn 20:3. [Internet]. 1995;20(3):273–97. Available from: https://link.springer.com/article/10.1007/BF00994018. [cited 2022 Jul 22]

    Article  MATH  Google Scholar 

  20. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536

    Article  MATH  Google Scholar 

  21. Subasi A (2020) Clustering examples. In: Practical machine learning for data analysis using python, pp 465–511

    Chapter  Google Scholar 

  22. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM [Internet] 60(6):84–90. Available from: https://dl.acm.org/doi/10.1145/3065386. [cited 2022 Jul 22]

    Article  Google Scholar 

  23. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition. 2016 Dec 9;2016-December:2818–26

    Google Scholar 

  24. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T et al (2017) MobileNets: efficient convolutional neural networks for mobile vision applications. [cited 2022 Jul 22]. Available from: http://arxiv.org/abs/1704.04861

  25. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) MobileNetV2: inverted residuals and linear bottlenecks. Proc IEEE Comput Soc Conf Comput Vis Pattern Recogn [Internet]:4510–4520. Available from: https://arxiv.org/abs/1801.04381v4. [cited 2022 Jul 30]

  26. Weng W, Zhu X (2015) U-net: convolutional networks for biomedical image segmentation. IEEE Access [Internet] 9:16591–16603. Available from: https://arxiv.org/abs/1505.04597v1. [cited 2022 Jul 22]

    Article  Google Scholar 

  27. GitHub - dair-ai/ml-visuals: ML Visuals contains figures and templates which you can reuse and customize to improve your scientific writing. [Internet]. [cited 2022 Oct 9]. Available from: https://github.com/dair-ai/ml-visuals

  28. APTOS 2019 Blindness Detection | Kaggle [Internet]. [cited 2022 Jul 28]. Available from: https://www.kaggle.com/c/aptos2019-blindness-detection

  29. Decencière E, Zhang X, Cazuguel G, Laÿ B, Cochener B, Trone C et al (2014) Feedback on a publicly distributed image database: the Messidor database. Image Analysis and Stereology 33(3):231–234

    Article  MATH  Google Scholar 

  30. Diabetic Retinopathy Detection | Kaggle [Internet]. [cited 2022 Jul 28]. Available from: https://www.kaggle.com/c/diabetic-retinopathy-detection/

  31. Porwal P, Pachade S, Kokare M, Deshmukh G, Son J, Bae W et al (2020) IDRiD: diabetic retinopathy – segmentation and grading challenge. Med Image Anal 59:101561

    Article  Google Scholar 

  32. Introduction - Grand Challenge [Internet]. [cited 2022 Jul 28]. Available from: https://drive.grand-challenge.org/

  33. Ocular Disease Recognition | Kaggle [Internet]. [cited 2022 Jul 28]. Available from: https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k

  34. Retinal image database | Retinal Image Analysis [Internet]. [cited 2022 Jul 28]. Available from: https://blogs.kingston.ac.uk/retinal/chasedb1/

  35. DIARETDB0 - Standard Diabetic Retinopathy Database [Internet]. [cited 2022 Jul 28]. Available from: https://www.it.lut.fi/project/imageret/diaretdb0/index.html

  36. DIARETDB1 - STANDARD DIABETIC RETINOPATHY DATABASE [Internet]. [cited 2022 Jul 28]. Available from: https://www.it.lut.fi/project/imageret/diaretdb1/

  37. Hoover A (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210

    Article  Google Scholar 

  38. Decencière E, Cazuguel G, Zhang X, Thibault G, Klein JC, Meyer F et al (2013) TeleOphta: machine learning and image processing methods for teleophthalmology. IRBM 34(2):196–203

    Article  Google Scholar 

  39. Phillips R, Forrester J, Sharp P (1993) Automated detection and quantification of retinal exudates. Graefes Arch Clin Exp Ophthalmol 231:2. [Internet]. 1993 Feb [cited 2022 Jul 22];231(2):90–4. Available from: https://link.springer.com/article/10.1007/BF00920219

    Article  Google Scholar 

  40. Shilpa Bv, Nagabhushan TN (2016) An ensemble approach to detect exudates in digital fundus images. In: Proceedings – 2016 2nd international conference on cognitive computing and information processing, CCIP 2016. 30 Dec 2016

    Google Scholar 

  41. Asha PR, Karpagavalli S (2015) Diabetic retinal exudates detection using Extreme Learning Machine. Adv Intell Syst Comput [Internet] 338:573–578. Available from: https://link.springer.com/chapter/10.1007/978-3-319-13731-5_62. [cited 2022 Jul 22]

    Google Scholar 

  42. Lin W, Liu H, Xu M, Zhang J (2008) Automated detection of exudates on color fundus image using region merging by k-NN graph. IFMBE Proc [Internet] 19 IFMBE:216–220. Available from: https://link.springer.com/chapter/10.1007/978-3-540-79039-6_56. [cited 2022 Jul 22]

    Article  Google Scholar 

  43. Khojasteh P, Passos Júnior LA, Carvalho T, Rezende E, Aliahmad B, Papa JP et al (2019) Exudate detection in fundus images using deeply-learnable features. Comput Biol Med 104:62–69

    Article  Google Scholar 

  44. Li G, Zheng S, Li X (2018) Exudate detection in fundus images via convolutional neural network. Commun Comput Inf Sci [Internet] 815:193–202. Available from: https://link.springer.com/chapter/10.1007/978-981-10-8108-8_18. [cited 2022 Jul 22]

    Google Scholar 

  45. Prentašić P, Lončarić S (2016) Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput Methods Prog Biomed 137:281–292

    Article  Google Scholar 

  46. Adem K (2018) Exudate detection for diabetic retinopathy with circular Hough transformation and convolutional neural networks. Expert Syst Appl 114:289–295

    Article  Google Scholar 

  47. Chudzik P, Majumdar S, Calivá F, Al-Diri B, Hunter A (2018) Microaneurysm detection using fully convolutional neural networks. Comput Methods Prog Biomed 158:185–192

    Article  Google Scholar 

  48. Yadav D, Karn AK, Giddalur A, Dhiman A, Sharma S, Muskan et al (2021) Microaneurysm detection using color locus detection method. Measurement 176:109084

    Article  Google Scholar 

  49. Liao Y, Xia H, Song S, Li H (2021) Microaneurysm detection in fundus images based on a novel end-to-end convolutional neural network. Biocybern Biomed Eng 41(2):589–604

    Article  Google Scholar 

  50. Murugan R, Roy P (2022) MicroNet: microaneurysm detection in retinal fundus images using convolutional neural network. Soft Comput [Internet] 26(3):1057–1066. Available from: https://link.springer.com/article/10.1007/s00500-022-06752-2. [cited 2022 Jul 22]

    Article  Google Scholar 

  51. Niemeijer M, van Ginneken B, Cree MJ, Mizutani A, Quellec G, Sanchez CI et al (2010) Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imaging 29(1):185–195

    Article  Google Scholar 

  52. Abràmoff MD, Reinhardt JM, Russell SR, Folk JC, Mahajan VB, Niemeijer M et al (2010) Automated early detection of diabetic retinopathy. Ophthalmology 117(6):1147–1154

    Article  Google Scholar 

  53. Noronha K, Acharya UR, Nayak KP, Kamath S, Bhandary S (2013) Decision support system for diabetic retinopathy using discrete wavelet transform. Proc Inst Mech Eng H 227(3):251–261

    Article  Google Scholar 

  54. Acharya UR, Ng EYK, Tan JH, Sree SV, Ng KH (2012) An integrated index for the identification of diabetic retinopathy stages using texture parameters. J Med Syst [Internet] 36(3):2011–2020. Available from: https://link.springer.com/article/10.1007/s10916-011-9663-8. [cited 2022 Jul 22]

    Article  Google Scholar 

  55. Acharya UR, Chua CK, Ng EYK, Yu W, Chee C (2008) Application of higher order spectra for the identification of diabetes retinopathy stages. J Med Syst [Internet] 32(6):481–488. Available from: https://link.springer.com/article/10.1007/s10916-008-9154-8. [cited 2022 Jul 22]

    Article  Google Scholar 

  56. Acharya UR, Lim CM, Ng EYK, Chee C, Tamura T (2009) Computer-based detection of diabetes retinopathy stages using digital fundus images. Proc Inst Mech Eng H 223(5):545–553

    Article  Google Scholar 

  57. Osareh A, Mirmehdi M, Thomas B, Markham R (2002) Classification and localisation of diabetic-related eye disease. Lect Notes Comput Sci (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [Internet] 2353:502–516. Available from: https://link.springer.com/chapter/10.1007/3-540-47979-1_34. [cited 2022 Jul 22]

    MATH  Google Scholar 

  58. Dupas B, Walter T, Erginay A, Ordonez R, Deb-Joardar N, Gain P et al (2010) Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy. Diabetes Metab [Internet] 36(3):213–220. Available from: https://pubmed.ncbi.nlm.nih.gov/20219404/. [cited 2022 Jul 22]

    Article  Google Scholar 

  59. Quellec G, Russell SR, Abramoff MD (2011) Optimal filter framework for automated, instantaneous detection of lesions in retinal images. IEEE Trans Med Imaging 30(2):523–533

    Article  Google Scholar 

  60. Philip S, Fleming AD, Goatman KA, Fonseca S, Mcnamee P, Scotland GS et al (2007) The efficacy of automated “disease/no disease” grading for diabetic retinopathy in a systematic screening programme. Br J Ophthalmol [Internet] 91(11):1512–1517. Available from: https://pubmed.ncbi.nlm.nih.gov/17504851/. [cited 2022 Jul 22]

    Article  Google Scholar 

  61. Gardner GG, Keating D, Williamson TH, Elliott AT (1996) Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br J Ophthalmol [Internet] 80(11):940–944. Available from: https://pubmed.ncbi.nlm.nih.gov/8976718/. [cited 2022 Jul 22]

    Article  Google Scholar 

  62. Sinthanayothin C, Kongbunkiat V, Phoojaruenchanachai S, Singalavanija A. Automated screening system for diabetic retinopathy. 2004;915–920

    Google Scholar 

  63. Antal B, Hajdu A (2014) An ensemble-based system for automatic screening of diabetic retinopathy. Knowl Based Syst 60:20–27

    Article  Google Scholar 

  64. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC et al (2016) Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 57(13):5200–5206

    Article  Google Scholar 

  65. Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology [Internet] 124(7):962–969. Available from: https://doi.org/10.1016/j.ophtha.2017.02.008

    Article  Google Scholar 

  66. Islam SMS, Hasan MM, Abdullah S (2018) Deep learning based early detection and grading of diabetic retinopathy using retinal fundus images. Available from: http://arxiv.org/abs/1812.10595. [cited 2022 Jul 22]

  67. Ghosh R, Ghosh K, Maitra S (2017) Automatic detection and classification of diabetic retinopathy stages using CNN. In: 2017 4th international conference on signal processing and integrated networks, SPIN 2017, pp 550–554

    Google Scholar 

  68. Xu K, Feng D, Mi H (2017) Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules 22(12):2054. Available from: https://www.mdpi.com/1420-3049/22/12/2054/htm. [cited 2022 Jul 22]

    Article  Google Scholar 

  69. Pratt H, Coenen F, Broadbent DM, Harding SP, Zheng Y (2016) Convolutional neural networks for diabetic retinopathy. Procedia Comput Sci 90:200–205

    Article  Google Scholar 

  70. Lin GM, Chen MJ, Yeh CH, Lin YY, Kuo HY, Lin MH et al (2018) Transforming retinal photographs to entropy images in deep learning to improve automated detection for diabetic retinopathy. J Ophthalmol [Internet] 2018. Available from: https://pubmed.ncbi.nlm.nih.gov/30275989/. [cited 2022 Jul 22]

  71. de la Torre J, Valls A, Puig D (2020) A deep learning interpretable classifier for diabetic retinopathy disease grading. Neurocomputing 396:465–476

    Article  Google Scholar 

  72. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410

    Article  Google Scholar 

  73. Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS et al (2018) Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology [Internet] 125(8):1264–1272. Available from: https://doi.org/10.1016/j.ophtha.2018.01.034

    Article  Google Scholar 

  74. Li Z, Keel S, Liu C, He Y, Meng W, Scheetz J et al (2018) An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs. Diabetes Care 41(12):2509–2516

    Article  Google Scholar 

  75. Tsighe M, Student HMT, Kant S (2019) Transfer learning based detection of diabetic retinopathy from small dataset. Available from: https://arxiv.org/abs/1905.07203v2. [cited 2022 Jul 22]

  76. Wang X, Lu Y, Wang Y, Chen WB (2018) Diabetic retinopathy stage classification using convolutional neural networks. In: Proceedings - 2018 IEEE 19th international conference on information reuse and integration for data science, IRI 2018, pp 465–471

    Google Scholar 

  77. Rakhlin A (2018) Diabetic Retinopathy detection through integration of Deep Learning classification framework. bioRxiv [Internet] 225508. Available from: https://www.biorxiv.org/content/10.1101/225508v2. [cited 2022 Jul 22]

  78. García G, Gallardo J, Mauricio A, López J, del Carpio C (2017) Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images. Lect Notes Comput Sci (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [Internet] 10614 LNCS:635–642. Available from: https://link.springer.com/chapter/10.1007/978-3-319-68612-7_72. [cited 2022 Jul 22]

    Google Scholar 

  79. Zhang W, Zhong J, Yang S, Gao Z, Hu J, Chen Y et al (2019) Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowl Based Syst 175:12–25

    Article  Google Scholar 

  80. Zhou K, Gu Z, Liu W, Luo W, Cheng J, Gao S et al (2018) Multi-cell multi-task convolutional neural networks for diabetic retinopathy grading. Annu Int Conf IEEE Eng Med Biol Soc [Internet] 2018:2724–2727. Available from: https://pubmed.ncbi.nlm.nih.gov/30440966/. [cited 2022 Jul 22]

    Google Scholar 

  81. Zhao Z, Zhang K, Hao X, Tian J, Heng Chua MC, Chen L et al (2019) BiRA-net: bilinear attention net for diabetic retinopathy grading. In: Proceedings - international conference on image processing, ICIP. 1 September 2019, pp 1385–1389

    Google Scholar 

  82. Li X, Hu X, Yu L, Zhu L, Fu CW, Heng PA (2020) CANet: cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Trans Med Imaging 39(5):1483–1493

    Article  Google Scholar 

  83. Zhou Y, Wang B, He X, Cui S, Shao L (2022) DR-GAN: conditional generative adversarial network for fine-grained lesion synthesis on diabetic retinopathy images. IEEE J Biomed Health Inform [Internet] 26(1):56–66. Available from: https://pubmed.ncbi.nlm.nih.gov/33332280/. [cited 2022 Jul 22]

    Article  Google Scholar 

  84. Vives-Boix V, Ruiz-Fernández D (2021) Diabetic retinopathy detection through convolutional neural networks with synaptic metaplasticity. Comput Methods Prog Biomed 206:106094

    Article  Google Scholar 

  85. Liu YP, Li Z, Xu C, Li J, Liang R (2019) Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network. Artif Intell Med 99:101694

    Article  Google Scholar 

  86. Chen W, Yang B, Li J, Wang J (2020) An approach to detecting diabetic retinopathy based on integrated shallow convolutional neural networks. IEEE Access 8:178552–178562

    Article  Google Scholar 

  87. Zago GT, Andreão RV, Dorizzi B, Teatini Salles EO (2020) Diabetic retinopathy detection using red lesion localization and convolutional neural networks. Comput Biol Med 116:103537

    Article  Google Scholar 

  88. Shaban M, Mahmoud AH, Shalaby A, Ghazal M, Sandhu H, El-Baz A (2020) Low-complexity computer-aided diagnosis for diabetic retinopathy. In: Diabetes and retinopathy, pp 133–149

    Chapter  Google Scholar 

  89. Wang Y, Wang GA, Fan W, Li J (2018) A deep learning based pipeline for image grading of diabetic retinopathy. Lect Notes Comput Sci (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [Internet] 10983 LNCS:240–248. Available from: https://link.springer.com/chapter/10.1007/978-3-030-03649-2_24. [cited 2022 Jul 22]

    Google Scholar 

  90. Mendels F, Heneghan C, Harper PD, Reilly RB, Thiran JP (1999) Extraction of the optic disk boundary in digital fundus images. In: Annual international conference of the IEEE engineering in medicine and biology - proceedings, vol 2, p 1139

    Google Scholar 

  91. Walter T, Klein JC (2001) Segmentation of color fundus images of the human retina: Detection of the optic disc and the vascular tree using morphological techniques. Lect Notes Comput Sci (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [Internet] 2199:282–287. Available from: https://link.springer.com/chapter/10.1007/3-540-45497-7_43. [cited 2022 Jul 22]

    MATH  Google Scholar 

  92. Chrástek R, Wolf M, Donath K, Niemann H, Paulus D, Hothorn T et al (2005) Automated segmentation of the optic nerve head for diagnosis of glaucoma. Med Image Anal 9(4):297–314

    Article  Google Scholar 

  93. Lee SS, Rajeswari M, Ramachandram D, Shaharuddin B (2007) Screening of diabetic retinopathy - Automatic segmentation of optic disc in colour fundus images. In: Proceedings of DFMA 2006 – 2nd international conference on distributed frameworks for multimedia applications, pp 37–43

    Google Scholar 

  94. Mahajan A, Kumar S, Bansal R (2019) A novel approach of optic disk detection for diagnosis of diabetic retinopathy. Lect Notes Netw Syst [Internet] 46:393–406. Available from: https://link.springer.com/chapter/10.1007/978-981-13-1217-5_39. [cited 2022 Jul 22]

    Article  Google Scholar 

  95. Gopi VP, Anjali MS, Niwas SI (2017) PCA-based localization approach for segmentation of optic disc. Int J Comput Assist Radiol Surg [Internet] 12(12):2195–2204. Available from: https://link.springer.com/article/10.1007/s11548-017-1670-x. [cited 2022 Jul 22]

    Article  Google Scholar 

  96. Bharkad S (2017) Automatic segmentation of optic disk in retinal images. Biomed Signal Process Control 31:483–498

    Article  Google Scholar 

  97. Gu Z, Liu P, Zhou K, Jiang Y, Mao H, Cheng J et al (2018) DeepDisc: optic disc segmentation based on atrous convolution and spatial pyramid pooling. Lect Notes Comput Sci (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [Internet] 11039 LNCS:253–260. Available from: https://link.springer.com/chapter/10.1007/978-3-030-00949-6_30. [cited 2022 Jul 22]

    Google Scholar 

  98. Tan JH, Acharya UR, Bhandary S v, Chua KC, Sivaprasad S (2017) Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J Comput Sci 20:70–79

    Article  Google Scholar 

  99. Tolias YA, Panas SM (1998) A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Trans Med Imaging 17(2):263–273

    Article  Google Scholar 

  100. Soares JVB, Leandro JJG, Cesar RM, Jelinek HF, Cree MJ (2006) Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 25(9):1214–1222

    Article  Google Scholar 

  101. Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26(10):1357–1365

    Article  Google Scholar 

  102. Goatman KA, Fleming AD, Philip S, Williams GJ, Olson JA, Sharp PF (2011) Detection of new vessels on the optic disc using retinal photographs. IEEE Trans Med Imaging 30(4):972–979

    Article  Google Scholar 

  103. Rossant F, Badellino M, Chavillon A, Bloch I, Paques M (2011) A morphological approach for vessel segmentation in eye fundus images, with quantitative evaluation. J Med Imaging Health Inform 1(1):42–49

    Article  Google Scholar 

  104. Hu K, Zhang Z, Niu X, Zhang Y, Cao C, Xiao F et al (2018) Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 309:179–191

    Article  Google Scholar 

  105. Xu R, Jiang G, Ye X, Chen YW (2018) Retinal vessel segmentation via multiscaled deep-guidance. Lect Notes Comput Sci (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [Internet] 11165 LNCS:158–168. Available from: https://link.springer.com/chapter/10.1007/978-3-030-00767-6_15. [cited 2022 Jul 22]

    Google Scholar 

  106. Wu Y, Xia Y, Zhang Y (2018) Deep classification and segmentation model for vessel extraction in retinal images. Lect Notes Comput Sci (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [Internet] 11257 LNCS:250–258. Available from: https://link.springer.com/chapter/10.1007/978-3-030-03335-4_22. [cited 2022 Jul 22]

    Google Scholar 

  107. Oliveira A, Pereira S, Silva CA (2018) Retinal vessel segmentation based on fully convolutional neural networks. Expert Syst Appl 112:229–242

    Article  Google Scholar 

  108. Jiang Z, Zhang H, Wang Y, Ko SB (2018) Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput Med Imaging Graph 68:1–15

    Article  Google Scholar 

  109. Ting DSW, Cheung CYL, Lim G, Tan GSW, Quang ND, Gan A et al (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA [Internet] 318(22):2211–2223. Available from: https://jamanetwork.com/journals/jama/fullarticle/2665775. [cited 2022 Jul 22]

    Article  Google Scholar 

  110. Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT et al (2019) Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit Health 1(1):e35–e44

    Article  Google Scholar 

  111. Tufail A, Rudisill C, Egan C, Kapetanakis V, Salas-Vega S, Owen CG et al (2017) Automated diabetic retinopathy image assessment software: diagnostic accuracy and cost-effectiveness compared with human graders. Ophthalmology 124(3):343–351

    Article  Google Scholar 

  112. Kanagasingam Y, Xiao D, Vignarajan J, Preetham A, Tay-Kearney ML, Mehrotra A (2018) Evaluation of artificial intelligence-based grading of diabetic retinopathy in primary care. JAMA Netw Open [Internet] 1(5):e182665. Available from: https://pubmed.ncbi.nlm.nih.gov/30646178/. [cited 2022 Jul 22]

    Article  Google Scholar 

  113. Bouhaimed M, Gibbins R, Owens D (2008) Automated detection of diabetic retinopathy: results of a screening study. https://home.liebertpub.com/dia [Internet] 10(2):142–148. Available from: https://www.liebertpub.com/doi/10.1089/dia.2007.0239. [cited 2022 Jul 22]

  114. Parah SA, Sheikh JA, Ahad F, Bhat GM (2018) High capacity and secure electronic patient record (EPR) embedding in color images for IoT driven healthcare systems. In: Internet of things and big data analytics toward next-generation intelligence, pp 409–437

    Chapter  Google Scholar 

  115. Gull S, Parah SA, Muhammad K (2020) Reversible data hiding exploiting Huffman encoding with dual images for IoMT based healthcare. Comput Commun 163:134–149

    Article  Google Scholar 

  116. Kaw JA, Gull S, Parah SA (2022) SVIoT: a secure visual-IoT framework for smart healthcare. Sensors 22(5):1773. https://doi.org/10.3390/s22051773

    Article  Google Scholar 

  117. Kumar D, Taylor GW, Wong A (2019) Discovery radiomics with CLEAR-DR: interpretable computer aided diagnosis of diabetic retinopathy. IEEE Access 7:25891–25896

    Article  Google Scholar 

  118. Liu C, Han X, Li Z, Ha J, Peng G, Meng W et al (2019) A self-adaptive deep learning method for automated eye laterality detection based on color fundus photography. PLoS One [Internet] 14(9):e0222025. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222025. [cited 2022 Jul 22]

    Article  Google Scholar 

  119. Martins J, Cardoso JS, Soares F (2020) Offline computer-aided diagnosis for glaucoma detection using fundus images targeted at mobile devices. Comput Methods Prog Biomed 192:105341

    Article  Google Scholar 

  120. Meng Q, Housden J, Matthew J, Rueckert D, Schnabel JA, Kainz B et al (2019) Weakly supervised estimation of shadow confidence maps in fetal ultrasound imaging. IEEE Trans Med Imaging 38(12):2755–2767

    Article  Google Scholar 

  121. Quellec G, Lamard M, Conze PH, Massin P, Cochener B (2020) Automatic detection of rare pathologies in fundus photographs using few-shot learning. Med Image Anal 61:101660

    Article  Google Scholar 

  122. Zhu J, Li Y, Hu Y, Ma K, Zhou SK, Zheng Y (2020) Rubik’s cube+: a self-supervised feature learning framework for 3D medical image analysis. Med Image Anal 64:101746

    Article  Google Scholar 

  123. Chen L, Bentley P, Mori K, Misawa K, Fujiwara M, Rueckert D (2019) Self-supervised learning for medical image analysis using image context restoration. Med Image Anal 58:101539

    Article  Google Scholar 

  124. Yellapragada B, Hornauer S, Snyder K, Yu S, Yiu G (2022) Self-supervised feature learning and phenotyping for assessing age-related macular degeneration using retinal fundus images. Ophthalmol Retina 6(2):116–129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad S. Alam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Long, F., Sang, J., Alam, M.S. (2023). Machine Learning Based Diabetic Retinopathy Detection and Classification. In: Parah, S.A., Hurrah, N.N., Khan, E. (eds) Intelligent Multimedia Signal Processing for Smart Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-031-34873-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34873-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34872-3

  • Online ISBN: 978-3-031-34873-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics