Skip to main content

Influence of Obstacles on the Mixing Performance of Serpentine Microchannels

  • Conference paper
  • First Online:
Techno-societal 2022 (ICATSA 2022)

Abstract

The several Lab on a Chip devices depend largely on the microchannels. Each microchannel’s performance is determined by its mixing properties and pressure drop. The performance evaluation for serpentine microchannels including obstacles is the main topic of this paper. The simulations based on computational fluid dynamics (CFD) were performed by employing COMSOL Multiphysics 5.0 software. The semicircular obstacles were introduced in the flow direction of serpentine microchannels. The two inlets’ entrance velocities ranged between 0.5, 0.75 and 1 mm/s. The microchannels’ width and height were 400 µm (for an aspect ratio of 1). Pressure changes (drops) and mixing in straight serpentine microchannels with no obstructions and semi-circular obstructions are discussed. Study is done on how inlet velocity affects pressure drop as well as mixing length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, C. Y., Wang, W. T., Liu, C. C., & Fu, L. M. (2016). Passive mixers in microfluidic systems: A review. Chemical Engineering Journal, 288, 146–160.

    Article  Google Scholar 

  2. Lim, Y. C., Kouzani, A. Z., & Duan, W. (2010). Lab-on-a-chip: A component view. Microsystem Technologies, 16(12), 1995–2015.

    Article  Google Scholar 

  3. Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368–373.

    Article  Google Scholar 

  4. Bothe, D., Stemich, C., & Warnecke, H. J. (2006). Fluid mixing in a T-shaped micro-mixer. Chemical Engineering Science, 61(9), 2950–2958.

    Article  Google Scholar 

  5. Bahrami, M., Yovanovich, M. M., & Culham, J. R. (2005). Pressure drop of fully-developed, laminar flow in microchannels of arbitrary cross-section. International Conference on Nanochannels, Microchannels, and Minichannels, 41855, 269–280.

    Article  Google Scholar 

  6. Song, H., Wang, Y., & Pant, K. (2012). Cross-stream diffusion under pressure-driven flow in microchannels with arbitrary aspect ratios: A phase diagram study using a three-dimensional analytical model. Microfluidics and Nanofluidics, 12(1–4), 265–267.

    Article  Google Scholar 

  7. Ansari, M. A., Kim, K. Y., & Kim, S. M. (2010). Numerical study of the effect on mixing of the position of fluid stream interfaces in a rectangular microchannel. Microsystem Technologies, 16(10), 1757–1763.

    Article  Google Scholar 

  8. Gobby, D., Angeli, P., & Gavriilidis, A. (2001). Mixing characteristics of T-type microfluidic mixers. Journal of Micromechanics and Microengineering, 11(2), 126.

    Article  Google Scholar 

  9. Cortes-Quiroz, C. A., Azarbadegan, A., & Zangeneh, M. (2014). Evaluation of flow characteristics that give higher mixing performance in the 3-D T-mixer versus the typical T-mixer. Sensors and Actuators B: Chemical, 31(202), 1209–1219.

    Article  Google Scholar 

  10. Lü, Y., Zhu, S., Wang, K., & Luo, G. (2016). Simulation of the mixing process in a straight tube with sudden changed cross-section. Chinese Journal of Chemical Engineering, 24(6), 711–718.

    Article  Google Scholar 

  11. Yang, I. D., Chen, Y. F., Tseng, F. G., Hsu, H. T., & Chieng, C. C. (2006). Surface tension driven and 3-D vortex enhanced rapid mixing microchamber. Journal of Microelectromechanical Systems, 15(3), 659–670.

    Article  Google Scholar 

  12. Sudarsan, A. P., & Ugaz, V. M. (2006). Fluid mixing in planar spiral microchannels. Lab on a Chip, 6(1), 74–82.

    Article  Google Scholar 

  13. Hossain, S., & Kim, K. Y. (2015). Mixing performance of a serpentine micromixer with non-aligned inputs. Micromachines, 6(7), 842–854.

    Article  Google Scholar 

  14. Gidde, R. R., Pawar, P. M., Ronge, B. P., Shinde, A. B., Misal, N. D., & Wangikar, S. S. (2019). Flow field analysis of a passive wavy micromixer with CSAR and ESAR elements. Microsystem Technologies, 25(3), 1017–1030.

    Article  Google Scholar 

  15. Das, S. S., Tilekar, S. D., Wangikar, S. S., & Patowari, P. K. (2017). Numerical and experimental study of passive fluids mixing in micro-channels of different configurations. Microsystem Technologies, 23(12), 5977–5988.

    Article  Google Scholar 

  16. Hong, C. C., Choi, J. W., & Ahn, C. H. (2004). A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab on a Chip, 4(2), 109–113.

    Article  Google Scholar 

  17. Xia, G., Li, J., Tian, X., & Zhou, M. (2012). Analysis of flow and mixing characteristics of planar asymmetric split-and-recombine (P-SAR) micromixers with fan-shaped cavities. Industrial & Engineering Chemistry Research, 51(22), 7816–7827.

    Article  Google Scholar 

  18. Li, J., Xia, G., & Li, Y. (2013). Numerical and experimental analyses of planar asymmetric split‐and‐recombine micromixer with dislocation sub‐channels. Journal of Chemical Technology & Biotechnology, 88(9), 1757.

    Google Scholar 

  19. Tran-Minh, N., Dong, T., & Karlsen, F. (2014). An efficient passive planar micromixer with ellipse-like micropillars for continuous mixing of human blood. Computer Methods and Programs in Biomedicine, 117(1), 20–29.

    Article  Google Scholar 

  20. Guo, L., Xu, H., & Gong, L. (2015). Influence of wall roughness models on fluid flow and heat transfer in microchannels. Applied Thermal Engineering, 84, 399–408.

    Article  Google Scholar 

  21. Jain, M., Rao, A., & Nandakumar, K. (2013). Numerical study on shape optimization of groove micromixers. Microfluidics and Nanofluidics, 15(5), 689–699.

    Article  Google Scholar 

  22. Kim, D. S., Lee, S. W., Kwon, T. H., & Lee, S. S. (2004). A barrier embedded chaotic micromixer. Journal of Micromechanics and Microengineering, 14(6), 798.

    Article  Google Scholar 

  23. Wangikar, S. S., Patowari, P. K., & Misra, R. D. (2018). Numerical and experimental investigations on the performance of a serpentine microchannel with semicircular obstacles. Microsystem Technologies, 24(8), 3307–3320.

    Article  Google Scholar 

  24. Jadhav, S. V., Pawar, P. M., Wangikar, S. S., Bhostekar, N. N., & Pawar, S. T. (2020). Thermal management materials for advanced heat sinks used in modern microelectronics. In IOP Conference Series: Materials Science and Engineering (Vol. 814, No. 1, p. 012044). IOP Publishing.

    Google Scholar 

  25. Wangikar, S. S., Patowari, P. K., & Misra, R. D. (2017). Effect of process parameters and optimization for photochemical machining of brass and German silver. Materials and Manufacturing Processes, 32(15), 1747–1755.

    Article  Google Scholar 

  26. Wangikar, S. S., Patowari, P. K., & Misra, R. D. (2016). Parametric optimization for photochemical machining of copper using grey relational method. In Techno-Societal 2016, International Conference on Advanced Technologies for Societal Applications (pp. 933–943). Springer.

    Google Scholar 

  27. Wangikar, S. S., Patowari, P. K., & Misra, R. D. (2018). Parametric optimization for photochemical machining of copper using overall evaluation criteria. Materials Today: Proceedings, 5(2), 4736–4742.

    Google Scholar 

  28. Wangikar, S. S., Patowari, P. K., Misra, R. D., & Misal, N. D. (2019). Photochemical machining: a less explored non-conventional machining process. In Non-conventional machining in modern manufacturing systems (pp. 188–201). IGI Global.

    Google Scholar 

  29. Chavan, N. V., Bhagwat, R. M., Gaikwad, S. S., Shete, S. S., Kashid, D. T., & Wangikar S. S. (2019). Fabrication & characterization of microfeatures on PMMA using CO2 laser machining. International Journal for Trends in Engineering and Technology, l36, 29–32.

    Google Scholar 

  30. Kulkarni, H. D., Rasal, A. B., Bidkar, O. H., Mali, V. H., Atkale, S. A., Wangikar, S. S., & Shinde, A. B. (2019). Fabrication of micro-textures on conical shape hydrodynamic journal bearing. International Journal for Trends in Engineering and Technology, 36(1), 37–41.

    Google Scholar 

  31. Raut, M. A., Kale, S. S., Pangavkar, P. V., Shinde, S. J., Wangikar, S. S., Jadhav, S. V., & Kashid, D. T. (2019). Fabrication of micro channel heat sink by using photo chemical machining. International Journal of New Technology and Research, 5(4), 72–75.

    Article  Google Scholar 

  32. Jadhav, S.V., Pawar, P. M., Shinde, A. B., & Wangikar, S. S. (2018). Performance analysis of elliptical pin fins in the microchannels. In Techno-Societal 2018 (pp. 295–304). Springer.

    Google Scholar 

  33. Bhagwat, R. M., Gaikwad, S. S., Shete, S. S., Chavan, N. V., & Wangikar, S. S. (2020). Study of etchant concentration effect on the edge deviation for photochemical machining of copper. Novyi MIR Research Journal, 5(9), 38–44.

    Google Scholar 

  34. Patil, P. K., Kulkarni, A. M., Bansode, A. A., Patil, M. K., Mulani, A. A., & Wangikar, S. S. (2020). Fabrication of logos on copper material employing photochemical machining. Novyi MIR Research Journal, 5(7), 70–73.

    Google Scholar 

  35. Kame, M. M., Sarvagod, M. V., Namde, P. A., Makar, S. C., Jadhav, S. V., & Wangikar, S. S. (2020). Fabrication of microchannels having different obstacles using photo chemical machining process Novyi MIR Research Journal, 5(6), 27–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailas Malgonde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malgonde, K., Ronge, B.P., Wangikar, S.S. (2024). Influence of Obstacles on the Mixing Performance of Serpentine Microchannels. In: Pawar, P.M., et al. Techno-societal 2022. ICATSA 2022. Springer, Cham. https://doi.org/10.1007/978-3-031-34644-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34644-6_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34643-9

  • Online ISBN: 978-3-031-34644-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics