Skip to main content

A Review on Heart Diseases Prediction Using Artificial Intelligence

  • Conference paper
  • First Online:
Machine Intelligence and Emerging Technologies (MIET 2022)

Abstract

Heart disease is one of the major concerns of this modern world. The insufficiency of the experts has made this issue a bigger concern. Diagnosing heart diseases at an early stage is possible with Artificial Intelligence (AI) techniques, which will lessen the needed number of experts. This paper has initially discussed different kinds of heart diseases and the importance of detecting them early. Two popular diagnosis systems for collecting data and their working function are then highlighted. Different types of Model architectures in the corresponding field are described. Firstly, the Support Vector Machine (SVM) machine learning algorithm is described, and secondly, popular deep learning model architecture such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), etc. are highlighted to detect heart disease. Finally, discussion, comparison, and future work are described. This article aims to clarify AI’s present and future state in medical technology to predict heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lih, O.S., et al.: Comprehensive electrocardiographic diagnosis based on deep learning. Artif. Intell. Med. 103, 101789 (2020). https://doi.org/10.1016/j.artmed.2019.101789

    Article  Google Scholar 

  2. Maximilian Buja, L., McAllister, H.A.: Coronary artery disease: pathologic anatomy and pathogenesis. Cardiovasc. Med. 593–610 (2007). https://doi.org/10.1007/978-1-84628-715-2_25

  3. Ye, S., et al.: Behavioral mechanisms, elevated depressive symptoms, and the risk for myocardial infarction or death in individuals with coronary heart disease: the regards (reason for geographic and racial differences in stroke) study. J. Am. Coll. Cardiol. 61, 622–630 (2013). https://doi.org/10.1016/j.jacc.2012.09.058

    Article  Google Scholar 

  4. Oh, S.L., Ng, E.Y.K., Tan, R.S., Acharya, U.R.: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput. Biol. Med. 102, 278–287 (2018). https://doi.org/10.1016/j.compbiomed.2018.06.002

    Article  Google Scholar 

  5. Acharya, U.R., Fujita, H., Lih, O.S., Hagiwara, Y., Tan, J.H., Adam, M.: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf. Sci. (Ny) 405, 81–90 (2017). https://doi.org/10.1016/j.ins.2017.04.012

    Article  Google Scholar 

  6. Chow, G.V., Marine, J.E., Fleg, J.L.: Epidemiology of arrhythmias and conduction disorders in older adults. Clin. Geriatr. Med. 28, 539–553 (2012). https://doi.org/10.1016/j.cger.2012.07.003

    Article  Google Scholar 

  7. Szymanski, B., Embrechts, M., Sternickel, K., Han, L., Ross, A., Zhu, L.: Using efficient SUPANOVA kernel for heart disease diagnosis. Intell. Eng. Syst. through Artif. Neural Netw. 16, 305–310 (2010) https://doi.org/10.1115/1.802566.paper46

  8. Rajkumar, A., Reena, G.S.: Diagnosis of heart disease using datamining algorithm. Glob. J. Comput. Sci. Technol. 10, 38–43 (2010)

    Google Scholar 

  9. Shafique, U., Majeed, F., Qaiser, H., Mustafa, I.U.: Data mining in healthcare for heart diseases. Int. J. Innov. Appl. Stud. 10, 1312 (2016)

    Google Scholar 

  10. Kumari, M., Godara, S.: Comparative study of data mining classification methods in cardiovascular disease prediction. Int. J. Comput. Sci. Trends Technol. 2, 304–308 (2011)

    Google Scholar 

  11. Anbarasi, M., Anupriya, E., Sriman Narayana Iyenger, N.Ch.: Enhanced prediction of heart disease with feature subset selection using genetic algorithm. Int. J. Eng. Sci. Technol. 2, 5370–5376 (2010)

    Google Scholar 

  12. Heart disease - Diagnosis and treatment - Mayo Clinic

    Google Scholar 

  13. Addison, P.S.: Wavelet transforms and the ECG: a review. Physiol. Meas. 26, R155–R199 (2005). https://doi.org/10.1088/0967-3334/26/5/R01

    Article  Google Scholar 

  14. Dupre, A., Vincent, S., Iaizzo, P.A.: Basic ECG theory, recordings, and interpretation. Handb. Card. Anatomy, Physiol. Devices, pp. 191–201 (2005) https://doi.org/10.1007/978-1-59259-835-9_15

  15. Madani, A., Ong, J.R., Tibrewal, A., Mofrad, M.R.K.: Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. npj Digit. Med. 1, 1–11 (2018). https://doi.org/10.1038/s41746-018-0065-x

    Article  Google Scholar 

  16. Kwon, J.M., Kim, K.H., Jeon, K.H., Park, J.: Deep learning for predicting in-hospital mortality among heart disease patients based on echocardiography. Echocardiography 36, 213–218 (2019). https://doi.org/10.1111/echo.14220

    Article  Google Scholar 

  17. Sudarsanan, S., Aravinth, J.: Classification of heart murmur using CNN. In: Proceedings of the 5th International Conference Communication Electronic System ICCES 2020, pp. 818–822 (2020). https://doi.org/10.1109/ICCES48766.2020.09138059

  18. Gjoreski, M., Gradisek, A., Budna, B., Gams, M., Poglajen, G.: Machine learning and end-to-end deep learning for the detection of chronic heart failure from heart sounds. IEEE Access 8, 20313–20324 (2020). https://doi.org/10.1109/ACCESS.2020.2968900

    Article  Google Scholar 

  19. Samanta, P., Pathak, A., Mandana, K., Saha, G.: Classification of coronary artery diseased and normal subjects using multi-channel phonocardiogram signal. Biocybern. Biomed. Eng. 39, 426–443 (2019). https://doi.org/10.1016/j.bbe.2019.02.003

    Article  Google Scholar 

  20. Li, H., et al.: A fusion framework based on multi-domain features and deep learning features of phonocardiogram for coronary artery disease detection. Comput. Biol. Med. 120, 103733 (2020). https://doi.org/10.1016/j.compbiomed.2020.103733

    Article  Google Scholar 

  21. Lee, J.G., et al.: Deep learning in medical imaging: general overview. Korean J. Radiol. 18(4), 570–584 (2017). https://doi.org/10.3348/kjr.2017.18.4.570

    Article  Google Scholar 

  22. Drucker, H., Surges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. Adv. Neural Inf. Process. Syst. 1, 155–161 (1997)

    Google Scholar 

  23. Wang, Y., Zhang, F., Chen, L.: An approach to incremental SVM learning algorithm. In: Proceedings - ISECS International Colloquium Computing Communication Control Management CCCM 2008. 1, pp. 352–354 (2008). https://doi.org/10.1109/CCCM.2008.163

  24. Kecman, V.: Support vector machines – an introduction 1 basics of learning from data. StudFuzz. 177, 1–47 (2005)

    Google Scholar 

  25. Tan, K.C., Teoh, E.J., Yu, Q., Goh, K.C.: A hybrid evolutionary algorithm for attribute selection in data mining. Expert Syst. Appl. 36, 8616–8630 (2009). https://doi.org/10.1016/j.eswa.2008.10.013

    Article  Google Scholar 

  26. Chala Beyene, M.: Survey on prediction and analysis the occurrence of heart disease using data mining techniques. Int. J. Pure Appl. Math. 118, 165–173 (2020)

    Google Scholar 

  27. Dai, W., Brisimi, T.S., Adams, W.G., Mela, T., Saligrama, V., Paschalidis, I.C.: Prediction of hospitalization due to heart diseases by supervised learning methods. Int. J. Med. Inform. 84, 189–197 (2015). https://doi.org/10.1016/j.ijmedinf.2014.10.002

    Article  Google Scholar 

  28. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  29. Rav, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B.: Deep learning for health informatics. IEEE J. Biomed. Health Inform. 21(1), 1–18 (2017). https://doi.org/10.1109/JBHI.2016.2636665

    Article  Google Scholar 

  30. Yin, W., Yang, X., Zhang, L., Oki, E.: ECG monitoring system integrated with IR-UWB radar based on CNN. IEEE Access. 4, 6344–6351 (2016). https://doi.org/10.1109/ACCESS.2016.2608777

    Article  Google Scholar 

  31. Gawande, N., Barhatte, A.: Heart diseases classification using convolutional neural network. In: Proceedings 2nd International Conference Communication Electronics Systems. ICCES 2017, pp. 17–20 (2018) https://doi.org/10.1109/CESYS.2017.8321264

  32. Yıldırım, Ö., Pławiak, P., Tan, R.S., Acharya, U.R.: Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput. Biol. Med. 102, 411–420 (2018). https://doi.org/10.1016/j.compbiomed.2018.09.009

    Article  Google Scholar 

  33. Xu, C., et al.: Direct detection of pixel-level myocardial infarction areas via a deep-learning algorithm. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 10435 LNCS, 240–249 (2017). https://doi.org/10.1007/978-3-319-66179-7_28

  34. Ma, F., You, Q., Chitta, R., Sun, T., Zhou, J., Gao, J.: Dipole: diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks. arXiv. 1903–1911 (2017)

    Google Scholar 

  35. Pillai, N.S.R., Bee, K.K.: Prediction of heart disease using Rnn algorithm. Int. Res. J. Eng. Technol. (IRJET) 6, 4452–4458 (2019)

    Google Scholar 

  36. Shihab, A.N., Mokarrama, M.J., Karim, R., Khatun, S., Arefin, M.S.: An iot-based heart disease detection system using rnn. Adv. Intell. Syst. Comput. 1200 AISC 535–545 (2021). https://doi.org/10.1007/978-3-030-51859-2_49

  37. Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R.: Learning to diagnose with LSTM recurrent neural networks. In: 4th International Conference Learning Represent ICLR 2016 - Conference Track Proceedings, pp. 1–18 (2016)

    Google Scholar 

  38. Wang, L., Zhou, X.: Detection of congestive heart failure based on LSTM-based deep network via short-term RR intervals. Sensors 19(7), 1502 (2019). https://doi.org/10.3390/s19071502

    Article  Google Scholar 

  39. Maragatham, G., Devi, S.: LSTM model for prediction of heart failure in big data. J. Med. Syst. 43(5), 1–13 (2019). https://doi.org/10.1007/s10916-019-1243-3

    Article  Google Scholar 

  40. Chitra, R.: Heart disease prediction system using supervised learning classifier. Bonfring Int. J. Softw Eng. Soft Comput. 3, 01–07 (2013). https://doi.org/10.9756/bijsesc.4336

    Article  Google Scholar 

  41. Choi, E., Schuetz, A., Stewart, W.F., Sun, J.: Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Informatics Assoc. 24, 361–370 (2017). https://doi.org/10.1093/jamia/ocw112

    Article  Google Scholar 

  42. Tan, J.H., et al.: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Comput. Biol. Med. 94, 19–26 (2018). https://doi.org/10.1016/j.compbiomed.2017.12.023

    Article  Google Scholar 

  43. Li, D., Li, X., Zhao, J., Bai, X.: Automatic staging model of heart failure based on deep learning. Biomed. Signal Process. Control. 52, 77–83 (2019). https://doi.org/10.1016/j.bspc.2019.03.009

    Article  Google Scholar 

  44. Acharya, U.R., et al.: Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals. Appl. Intell. 49(1), 16–27 (2018). https://doi.org/10.1007/s10489-018-1179-1

    Article  Google Scholar 

  45. Sanchez-Martinez, S., et al.: Machine learning analysis of left ventricular function to characterize heart failure with preserved ejection fraction. Circ. Cardiovasc. Imaging 11, e007138 (2018). https://doi.org/10.1161/CIRCIMAGING.117.007138

    Article  Google Scholar 

  46. Ebrahimzadeh, E., Kalantari, M., Joulani, M., Shahraki, R.S., Fayaz, F., Ahmadi, F.: Prediction of paroxysmal atrial fibrillation: a machine learning based approach using combined feature vector and mixture of expert classification on HRV signal. Comput. Methods Programs Biomed. 165, 53–67 (2018). https://doi.org/10.1016/j.cmpb.2018.07.014

    Article  Google Scholar 

  47. Deperlioğlu, Ö.: Classification of segmented phonocardiograms by convolutional neural networks. BRAIN. Broad Res. Artif. Intell. Neurosci. 10, 5–13 (2019)

    Google Scholar 

  48. Mohapatra, I., Pattnaik, P., Mohanty, M.N.: Cardiac failure detection using neural network model with dual-tree complex wavelet transform. Springer Singapore (2019). https://doi.org/10.1007/978-981-13-2182-5_9

  49. Kusunose, K., et al.: A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images. JACC Cardiovasc. Imaging. 13, 374–381 (2020). https://doi.org/10.1016/j.jcmg.2019.02.024

    Article  Google Scholar 

  50. Baloglu, U.B., Talo, M., Yildirim, O., Tan, R.S., Acharya, U.R.: Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recognit. Lett. 122, 23–30 (2019). https://doi.org/10.1016/j.patrec.2019.02.016

    Article  Google Scholar 

  51. Khade, S., Subhedar, A., Choudhary, K., Deshpande, T., Kulkarni, U.: A System to detect heart failure using deep learning techniques. Int. Res. J. Eng. Technol. 6, 384–387 (2019)

    Google Scholar 

  52. Hoang, T., Fahier, N., Fang, W.C.: Multi-leads ECG premature ventricular contraction detection using tensor decomposition and convolutional neural network. In: BioCAS 2019 - Biomedical Circuits Systems Conference Proceedings, pp. 1–4 (2019). https://doi.org/10.1109/BIOCAS.2019.8919049

  53. Bouny, L.E., Khalil, M., Adib, A.: An end-to-end multi-level wavelet convolutional neural networks for heart diseases diagnosis. Neurocomputing 417, 187–201 (2020). https://doi.org/10.1016/j.neucom.2020.07.056

    Article  Google Scholar 

  54. Kusunose, K., Haga, A., Inoue, M., Fukuda, D., Yamada, H., Sata, M.: Clinically feasible and accurate view classification of echocardiographic images using deep learning. Biomolecules 10, 1–8 (2020). https://doi.org/10.3390/biom10050665

    Article  Google Scholar 

  55. Khamis, H., Zurakhov, G., Azar, V., Raz, A., Friedman, Z., Adam, D.: Automatic apical view classification of echocardiograms using a discriminative learning dictionary. Med. Image Anal. 36, 15–21 (2017). https://doi.org/10.1016/j.media.2016.10.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anik Tahabilder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hasnat, R., Al Mamun, A., Musha, A., Tahabilder, A. (2023). A Review on Heart Diseases Prediction Using Artificial Intelligence. In: Satu, M.S., Moni, M.A., Kaiser, M.S., Arefin, M.S. (eds) Machine Intelligence and Emerging Technologies. MIET 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 491. Springer, Cham. https://doi.org/10.1007/978-3-031-34622-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34622-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34621-7

  • Online ISBN: 978-3-031-34622-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics