Skip to main content

Numerical Study on W-type Collecting Plates with Multiple Corona Electrodes of Electrostatic Precipitators

  • Conference paper
  • First Online:
Proceedings of the 16th International Conference on Electrostatic Precipitation (ICESP 2022)

Abstract

The optimal arrangement of collecting plates and corona wires considerably impacts the collection efficiency of Electrostatic Precipitators (ESPs). Many experts are striving to improve existing models in a variety of methods. This research aims to examine the effects of using multiple corona wires with W-type collecting plates on the properties of electrostatic precipitators. Three different types of corona wire arrangements with W-type collecting plates were modeled and compared with Flat Plates (FPs) to evaluate the effect of using multiple corona electrodes on the electrical field distribution, space charge density distribution, current density distribution, and particle collection efficiency.

Supported by the Stipendium Hungaricum Scholarship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perera, F.P.: Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ. Health Perspect. 125, 141–148 (2017)

    Article  Google Scholar 

  2. Fayyad, M.B., González, A.A., Iváncsy, T.: Numerical study of a duct-type ESP with W-type collecting electrodes and different circular corona electrodes radius. In: 2022 8th International Youth Conference on Energy (IYCE), pp. 1–5 (2022)

    Google Scholar 

  3. Mizuno, A.: Electrostatic precipitation. IEEE Trans. Dielectr. Electr. Insul. 7, 615–624 (2000)

    Article  Google Scholar 

  4. Zheng, C., et al.: Formation, transformation, measurement, and control of SO3 in coal-fired power plants. Fuel 241, 327–346 (2019)

    Article  Google Scholar 

  5. Liang, Y., et al.: Forward ultra-low emission for power plants via wet electrostatic precipitators and newly developed demisters: filterable and condensable particulate matters. Atmos. Environ. 225, 117372 (2020)

    Article  Google Scholar 

  6. Asipuela, A., Fayyad, M.B., Iváncsy, T.: Study and numerical simulation of a duct-type ESP with wavy collecting electrodes and different circular corona electrodes radius. In: 2022 IEEE 4th International Conference on Dielectrics (ICD), pp. 234–238 (2022)

    Google Scholar 

  7. Zhou, W., Jiang, R., Sun, Y., Chen, B., Liu, B.: Study on multi-physical field characteristics of electrostatic precipitator with different collecting electrodes. Powder Technol. 381, 412–420 (2021)

    Article  Google Scholar 

  8. Wang, Y., et al.: Improving the removal of particles via electrostatic precipitator by optimizing the corona wire arrangement. Powder Technol. 388, 201–211 (2021). https://www.sciencedirect.com/science/article/pii/S0032591021003740

  9. Wang, X.: Effects of corona wire distribution on characteristics of electrostatic precipitator. Powder Technol. 366, 36–42 (2020). https://www.sciencedirect.com/science/article/pii/S0032591020301480

  10. Lee, G.H., Hwang, S.Y., Cheon, T.W., Kim, H.J., Han, B., Yook, S.J.: Optimization of pipe-and-spike discharge electrode shape for improving electrostatic precipitator collection efficiency. Powder Technol. 379, 241–250 (2021). https://www.sciencedirect.com/science/article/pii/S0032591020309931

  11. Choi, H.Y., Park, Y.G., Ha, M.Y.: Numerical simulation of the wavy collecting plate effects on the performance of an electrostatic precipitator. Powder Technol. 382, 232–243 (2021)

    Article  Google Scholar 

  12. Gao, W., et al.: Numerical simulation of particle migration in electrostatic precipitator with different electrode configurations. Powder Technol. 361, 238–247 (2020)

    Article  Google Scholar 

  13. Ko, J.H., Ihm, S.K.: A two-dimensional model for polydisperse particles on the effective migration rate of the electrostatic precipitator with wider plate-spacing. Aerosol Sci. Technol. 26, 398–402 (1997)

    Article  Google Scholar 

  14. Asipuela, A., Iváncsy, T.: Study and numerical simulation of the electrical properties of a duct-type electrostatic precipitator using seven circular corona wires: a review. Periodica Polytechnica Electr. Eng. Comput. Sci. 66, 286–293 (2022). https://pp.bme.hu/eecs/article/view/19482

  15. Wen, T.Y., Krichtafovitch, I., Mamishev, A.V.: Numerical study of electrostatic precipitators with novel particle-trapping mechanism. J. Aerosol Sci. 95, 95–103 (2016)

    Article  Google Scholar 

  16. Zhu, Y., Gao, M., Chen, M., Shi, J., Shangguan, W.: Numerical simulation of capture process of fine particles in electrostatic precipitators under consideration of electrohydrodynamics flow. Powder Technol. 354, 653–675 (2019)

    Article  Google Scholar 

  17. Shen, H., Yu, W., Jia, H., Kang, Y.: Electrohydrodynamic flows in electrostatic precipitator of five shaped collecting electrodes. J. Electrostat. 95, 61–70 (2018)

    Article  Google Scholar 

  18. Asipuela, A., Fayyad, M.B., Iváncsy, T.: The effect of corona wire position and radius in a duct-type ESP with wavy collecting plates. Int. J. Electr. Electron. Eng. Telecommun. 11, 262–268 (2022)

    Google Scholar 

  19. Tong, Y., et al.: Separation of fine particulates using a honeycomb tube electrostatic precipitator equipped with arista electrodes. Sep. Purif. Technol. 236, 116299 (2020). https://www.sciencedirect.com/science/article/pii/S1383586619330126

  20. Yan, P., et al.: Characteristics of negative dc corona discharge in a wire-plate configuration at high temperatures. Sep. Purif. Technol. 139, 5–13 (2015). https://www.sciencedirect.com/science/article/pii/S1383586614006388

  21. Xu, X., et al.: Effect of electrode configuration on particle collection in a high-temperature electrostatic precipitator. Sep. Purif. Technol. 166, 157–163 (2016). https://www.sciencedirect.com/science/article/pii/S138358661630226X

  22. Said, H.A., Aissou, M., Nouri, H., Zebboudj, P.Y.: Effect of wires number on corona discharge of an electrostatic precipitators. J. Electr. Syst. 10, 392–405 (2014)

    Google Scholar 

  23. Said, H.A., Nouri, H., Zebboudj, Y.: Analysis of current-voltage characteristics in the wires-to-planes geometry during corona discharge. Eur. Phys. J.-Appl. Phys. 67, 8 (2014)

    Google Scholar 

  24. Khaled, U., Eldein, A.Z.: Experimental study of V–I characteristics of wire-plate electrostatic precipitators under clean air conditions. J. Electrostat. 71, 228–234 (2013)

    Article  Google Scholar 

  25. Jedrusik, M., Swierczok, A., Teisseyre, R.: Experimental study of fly ash precipitation in a model electrostatic precipitator with discharge electrodes of different design. Powder Technol. 135, 295–301 (2003)

    Article  Google Scholar 

  26. Wang, Y., et al.: Insights into the role of ionic wind in honeycomb electrostatic precipitators. J. Aerosol Sci. 133, 83–95 (2019)

    Article  Google Scholar 

  27. Dong, M., Zhou, F., Zhang, Y., Shang, Y., Li, S.: Numerical study on fine-particle charging and transport behaviour in electrostatic precipitators. Powder Technol. 330, 210–218 (2018)

    Article  Google Scholar 

  28. Potrymai, E., Perstnov, I.: Time dependent modelling and simulation of the corona discharge in electrostatic precipitators (2014)

    Google Scholar 

  29. COMSOL Multiphysics: Electrostatic precipitator (2018). https://www.comsol.com/model/electrostatic-precipitator-71361

  30. Rubinetti, D., Weiss, D., Egli, W.: Corona discharge-a fully coupled numerical approach verified and validated. Int. J. Multiphys. 11, 375–386 (2017)

    Google Scholar 

  31. Zheng, C., et al.: Numerical simulation of corona discharge and particle transport behavior with the particle space charge effect. J. Aerosol Sci. 118, 22–33 (2018)

    Article  Google Scholar 

  32. Świerczok, A., Jȩdrusik, M.: The collection efficiency of ESP model - comparison of experimental results and calculations using Deutsch model. J. Electrostat. 91, 41–47 (2018). https://www.sciencedirect.com/science/article/pii/S0304388617303029

  33. Fayyad, M.B., González, A.A., Iváncsy, T.: The effects of the corona wire distribution with W-type of collecting plates on the characteristics of electrostatic precipitators. In: Presented at 2022 International Conference on Energy Storage Technology and Power Systems (ESPS 2022) (2022)

    Google Scholar 

  34. He, Z., Dass, E.T.: Correlation of design parameters with performance for electrostatic precipitator. Part I. 3D model development and validation. Appl. Math. Model. 57, 633–655 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo’ath Bani Fayyad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bani Fayyad, M., Asipuela González, A., Iváncsy, T. (2023). Numerical Study on W-type Collecting Plates with Multiple Corona Electrodes of Electrostatic Precipitators. In: Németh, B. (eds) Proceedings of the 16th International Conference on Electrostatic Precipitation. ICESP 2022. Lecture Notes in Electrical Engineering, vol 1052. Springer, Cham. https://doi.org/10.1007/978-3-031-34526-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34526-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34525-8

  • Online ISBN: 978-3-031-34526-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics