Skip to main content

Phytoplankton, Primary Productivity, and Fishery: Case Study from the Northern Indian Ocean

  • Chapter
  • First Online:
Dynamics of Planktonic Primary Productivity in the Indian Ocean

Abstract

Phytoplankton are the base of the food web, and their efficiency to capture carbon in the organic form via the process of photosynthesis determines the rate of primary productivity. Similar to many other species in the higher trophic levels, fish stocks are inherently dependent on primary productivity. This could be in the form of larval survival that determines the success of recruitment or in the form of providing food for adult fishes that takes up long migration to the breeding ground. The dynamics of phytoplankton distribution itself is connected to the met-ocean processes, including teleconnection to the processes far in the Indian Ocean or even in the Pacific Ocean. In this chapter, these linkages are described by using the fish catch landings as well as satellite remote sensing data to provide a holistic view of how fish catch may vary because of the combination of factors, including anthropogenic and natural.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarino, A. (1981). The relation between the distribution of zooplankton predators and anchovy larvae. Rapports et Proces-verbaux des Réunions. Conseil International pour l’Éxploration de la Mer, 178, 197–199.

    Google Scholar 

  • Ashok, K., Guan, Z., & Yamagata, T. (2001). Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophysical Research Letters, 28(23), 4499–4502.

    Article  Google Scholar 

  • Balachandran, T., & Kurian, C. V. (1980). Studies on meroplankton [Doctoral dissertation, Cochin University of Science and Technology].

    Google Scholar 

  • Balachandran, T., & Peter, K. J. (1987). The role of plankton research in fisheries development. In CMFRI bulletin: National symposium on research and development in marine fisheries sessions I & II 1987 (Vol. 44, pp. 163–173). CMFRI.

    Google Scholar 

  • Barnes, H. (1956). Balanus balanoides (L.) in the Firth of Clyde: The development and annual variation of the larval population, and the causative factors. The Journal of Animal Ecology, 25, 72–84.

    Article  Google Scholar 

  • Brooks, J. L., & Dodson, S. I. (1965). Predation, body size, and composition of plankton: The effect of a marine planktivore on lake plankton illustrates theory of size, competition, and predation. Science, 150(3692), 28–35.

    Article  Google Scholar 

  • Charabi, Y. (2009). Arabian summer monsoon variability: Teleconexion to ENSO and IOD. Atmospheric Research, 91(1), 105–117., ISSN 0169-8095. https://doi.org/10.1016/j.atmosres.2008.07.006

    Article  Google Scholar 

  • Friedland, K. D., Stock, C., Drinkwater, K. F., Link, J. S., Leaf, R. T., Shank, B. V., Rose, J. M., Pilskaln, C. H., & Fogarty, M. J. (2012). Pathways between primary production and fisheries yields of large marine ecosystems. PLoS One, 7(1), e28945.

    Article  Google Scholar 

  • Gulland, J. A. (1962). The application of mathematical models to fish populations. In E. D. Le Cren & N. W. Holdgate (Eds.), The exploitation of natural animal populations. Blackwell Scientific Publications.

    Google Scholar 

  • Gulland, J. A. (1970). Food chain studies and some problems in world fisheries. In J. H. Steele (Ed.), Marine food chains (p. 296). Oliver and Boyd.

    Google Scholar 

  • Horta, S., & Defeo, O. (2012). The spatial dynamics of the whitemouth croaker artisanal fishery in Uruguay and interdependencies with the industrial fleet. Fisheries Research, 125, 121–128.

    Article  Google Scholar 

  • Hurd, L. E., Mellinger, M. V., Wolf, L. L., & McNaughton, S. J. (1971). Stability and diversity at three trophic levels in terrestrial successional ecosystems. Science, 173(4002), 1134–1136.

    Article  Google Scholar 

  • Koblentz-Mishke, O. J. (1970). Plankton primary production of the world ocean. In W. S. Wooster (Ed.), Scientific exploration of the South Pacific (pp. 183–193). National Academy of Sciences.

    Google Scholar 

  • Kumar, K. K., Rajagopalan, B., & Cane, M. A. (1999). On the weakening relationship between the Indian monsoon and ENSO. Science, 284(5423), 2156–2159.

    Article  Google Scholar 

  • Leong, R. J., & O’Connell, C. P. (1969). A laboratory study of particulate and filter feeding of the northern anchovy (Engraulis mordax). Journal of the Fisheries Research Board of Canada, 26(3), 557–582.

    Article  Google Scholar 

  • MacArthur, R. (1955). Fluctuations of animal populations and a measure of community stability. Ecology, 36(3), 533–536.

    Article  Google Scholar 

  • Martens, J., & Huntington, B. E. (2012). Creating a GIS-based model of marine debris “hot spots” to improve efficiency of a lobster trap debris removal program. Marine Pollution Bulletin, 64(5), 949–955.

    Article  Google Scholar 

  • McLaren, I. A. (1963). Effects of temperature on growth of zooplankton, and the adaptive value of vertical migration. Journal of the Fisheries Research Board of Canada, 20(3), 685–727.

    Article  Google Scholar 

  • Nair, R. V. (1951). Studies on the life-history, bionomics and fishery of the white sardine, Kowala goval (Cuv.). Proceedings of Indo-Pacific Fisheries Council, 2, 1–16.

    Google Scholar 

  • Nair, R. V., & Subrahmanyan, R. (1955). The diatom, Fragilaria oceanica Cleve, an indicator of abundance of the Indian oil sardine, Sardinella longiceps Cuv. and Val. Current Science, 24(2), 41–42.

    Google Scholar 

  • Nimit, K. (2021). Ideas and perspectives: Ushering the Indian Ocean into the UN Decade of Ocean Science for Sustainable Development (UNDOSSD) through marine ecosystem research and operational services–an early career’s take. Biogeosciences, 18(12), 3631–3635.

    Article  Google Scholar 

  • Nimit, K., Lotlikar, A., & Srinivasa Kumar, T. (2016). Validation of MERIS sensor’s CoastColour algorithm for waters off the west coast of India. International Journal of Remote Sensing, 37(9), 2066–2076.

    Article  Google Scholar 

  • Parsons, T. R., et al. (1967). Some observations on the dependence of zooplankton grazing on cell size and concentration of phytoplankton blooms. Journal of the Oceanographic Society of Japan, 23, 10–17.

    Article  Google Scholar 

  • Parsons, T. R., & LeBrasseur, R. J. (1973). The availability of food to different trophic levels in the marine food chain. In J. H. Steele (Ed.), Marine food chains. Oliver and Boyd.

    Google Scholar 

  • Pattiaratchi, C., van der Mheen, M., Schlundt, C., Narayanaswamy, B. E., Sura, A., Hajbane, S., White, R., Kumar, N., Fernandes, M., & Wijeratne, S. (2022). Plastics in the Indian Ocean–sources, transport, distribution, and impacts. Ocean Science, 18(1), 1–28.

    Article  Google Scholar 

  • Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., & Torres, F., Jr. (1998). Fishing down marine food webs. Science, 279(5352), 860–863.

    Article  Google Scholar 

  • Pierce, G. J., Wang, J., Zheng, X., Bellido, J. M., Boyle, P. R., Denis, V., & Robin, J. P. (2001). A cephalopod fishery GIS for the Northeast Atlantic: Development and application. International Journal of Geographical Information Science, 15(8), 763–784.

    Article  Google Scholar 

  • Platt, T., & Rao, D. S. (1975). 11. Primary production of marine microphytes. In J. P. Cooper (Ed.), Photosynthesis and productivity in different environments (p. 249). Cambridge University Press.

    Google Scholar 

  • Ryther, J. H. (1969). Photosynthesis and fish production in the sea: The production of organic matter and its conversion to higher forms of life vary throughout the world ocean. Science, 166(3901), 72–76.

    Article  Google Scholar 

  • Sakthivel, M. (1972). Studies on Euthecosomata of the Indian ocean [Doctoral dissertation, Ph.D. Thesis, Cochin University, India].

    Google Scholar 

  • Selvakumar, R. A. (1970). Cladoceran swarm in relation to mackerel fishery along the west coast of India. Curr Sci, 39, 481–482.

    Google Scholar 

  • Steele, J. H. (1965). Some problems in the study of marine resources. Special Publications International Commission for North-West Atlantic Fisheries, 6, 463–476.

    Google Scholar 

  • van Ruth, P. D., Ganf, G. G., & Ward, T. M. (2010). Hot-spots of primary productivity: An alternative interpretation to conventional upwelling models. Estuarine, Coastal and Shelf Science, 90(3), 142–158.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nimit Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, N., Manickavasagam, S., Ponmani, M., Madhu, V.R., Meenakumari, B. (2023). Phytoplankton, Primary Productivity, and Fishery: Case Study from the Northern Indian Ocean. In: Tripathy, S.C., Singh, A. (eds) Dynamics of Planktonic Primary Productivity in the Indian Ocean. Springer, Cham. https://doi.org/10.1007/978-3-031-34467-1_14

Download citation

Publish with us

Policies and ethics