Skip to main content

New Horizons for Metamorphic Relationships in Formal Verification

  • Conference paper
  • First Online:
Computer Science – CACIC 2022 (CACIC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1778))

Included in the following conference series:

  • 118 Accesses

Abstract

In this work we broadened the impact of the so called Metamorphic relationships (MR’s) in the formal verification phase. We showed the potential of our behavioral framework called FVS (Feather Weight Visual Scenarios) to successfully denote metamorphic properties in diverse, complex and meaningful domains such as UAV’s flying missions and operating systems for On Board Computers (OBC) for nano satellites. We employed MR’s to validate behavior in a BIG-DATA context, where possible a large amount of data and information seen as traces must be verified but also a novel way to relate different goals and UAV’s configurations in the context of the dynamic adaption of AUV’s missions due to changes in the requirements. In addition, we explored complementary behavior as a possible source for obtaining MR’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.freertos.org/.

References

  1. Agarwal, R., Dhar, V.: Big data, data science, and analytics: the opportunity and challenge for is research (2014)

    Google Scholar 

  2. Asrafi, M., Liu, H., Kuo, F.C.: On testing effectiveness of metamorphic relations: a case study. In: 2011 Fifth International Conference on Secure Software Integration and Reliability Improvement, pp. 147–156. IEEE (2011)

    Google Scholar 

  3. Asteasuain, F.: A flexible and expressive formalism to specify metamorphic properties for big data systems validation. In: CACIC, pp 282–291 (2022). ISBN 978-987-1364-31-2

    Google Scholar 

  4. Asteasuain, F.: Formalizing operating systems for nano satellites on board computers. In: CONAIISI (2022)

    Google Scholar 

  5. Asteasuain, F., Braberman, V.: Declaratively building behavior by means of scenario clauses. Requirements Eng. 22(2), 239–274 (2016). https://doi.org/10.1007/s00766-015-0242-2

    Article  Google Scholar 

  6. Asteasuain, F., Caldeira, L.R.:A sound and correct formalism to specify, verify and synthesize behavior in BIG DATA systems. In: Pesado, P., Gil, G. (eds) Computer Science. CACIC 2021. CCIS, vol. 1584, pp. 109–123. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05903-2_8

  7. Asteasuain, F., Calonge, F., Dubinsky, M., Gamboa, P.: Open and branching behavioral synthesis with scenario clauses. CLEI E-J. 24(3), 1–20 (2021)

    Google Scholar 

  8. Asteasuain, F., Calonge, F., Gamboa, P.: Exploiting anti-scenarios for the non realizability problem. In: Pesado, P., Arroyo, M. (eds.) CACIC 2019. CCIS, vol. 1184, pp. 157–171. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48325-8_11

    Chapter  Google Scholar 

  9. Baidya, S., Shaikh, Z., Levorato, M.: Flynetsim: an open source synchronized UAV network simulator based on ns-3 and ardupilot. In: Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 37–45 (2018)

    Google Scholar 

  10. Beck, K., et al.: Manifesto for agile software development (2001)

    Google Scholar 

  11. Bellettini, C., Camilli, M., Capra, L., Monga, M.: Distributed CTL model checking using Mapreduce: theory and practice. CCPE 28(11), 3025–3041 (2016)

    Google Scholar 

  12. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’Ar, Y.: Synthesis of reactive (1) designs (2011)

    Google Scholar 

  13. Braberman, V., Garbervestky, D., Kicillof, N., Monteverde, D., Olivero, A.: Speeding up model checking of timed-models by combining scenario specialization and live component analysis. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 58–72. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04368-0_7

    Chapter  MATH  Google Scholar 

  14. Camilli, M.: Formal verification problems in a big data world: towards a mighty synergy. In: ICSE, pp. 638–641 (2014)

    Google Scholar 

  15. Ceresa, M., Gorostiaga, F., Sánchez, C.: Declarative stream runtime verification (hLola). In: Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470, pp. 25–43. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64437-6_2

    Chapter  Google Scholar 

  16. Chen, T.Y., Cheung, S.C., Yiu, S.M.: Metamorphic testing: a new approach for generating next test cases. arXiv preprint arXiv:2002.12543 (2020)

  17. Ding, J., Zhang, D., Hu, X.H.: A framework for ensuring the quality of a big data service. In: 2016 SCC, pp. 82–89. IEEE (2016)

    Google Scholar 

  18. Doncaster, B., Williams, C., Shulman, J.: 2017 nano/microsatellite market forecast. SpaceWorks Enterprises Inc., Atlanta, GA, Technical report (2017)

    Google Scholar 

  19. Fernandez, L., Ruiz-De-Azua, J.A., Calveras, A., Camps, A.: Assessing Lora for satellite-to-earth communications considering the impact of ionospheric scintillation. IEEE access 8, 165570–165582 (2020)

    Article  Google Scholar 

  20. Gorostiaga, F., Sánchez, C.: HLola: a very functional tool for extensible stream runtime verification. In: TACAS 2021. LNCS, vol. 12652, pp. 349–356. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72013-1_18

    Chapter  Google Scholar 

  21. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0_24

    Chapter  MATH  Google Scholar 

  22. Hummel, O., Eichelberger, H., Giloj, A., Werle, D., Schmid, K.: A collection of software engineering challenges for big data system development. In: SEAA, pp. 362–369. IEEE (2018)

    Google Scholar 

  23. Kumar, V.D., Alencar, P.: Software engineering for big data projects: domains, methodologies and gaps. In: IEEEBIGDATA, pp. 2886–2895. IEEE (2016)

    Google Scholar 

  24. Laigner, R., Kalinowski, M., Lifschitz, S., Monteiro, R.S., de Oliveira, D.: A systematic mapping of software engineering approaches to develop big data systems. In: SEAA, pp. 446–453. IEEE (2018)

    Google Scholar 

  25. Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.: Formal specification and verification of autonomous robotic systems: a survey. ACM Comput. Surv. (CSUR) 52(5), 1–41 (2019)

    Article  Google Scholar 

  26. Magee, J., Kramer, J.: State models and Java Programs. Wiley, Chichester (1999)

    MATH  Google Scholar 

  27. Mayer, J., Guderlei, R.: An empirical study on the selection of good metamorphic relations. In: 30th Annual International Computer Software and Applications Conference (COMPSAC 2006), vol. 1, pp. 475–484. IEEE (2006)

    Google Scholar 

  28. Mitchell, T.M., Mitchell, T.M.: Machine LLearning, vol. 1. McGraw-hill New York (1997)

    Google Scholar 

  29. Niaz, I.A., Tanaka, J.: Code generation from UML statecharts. In: Proceedings of the 7th IASTED International Conference on Software Engineering and Application (SEA 2003), Marina Del Rey, pp. 315–321 (2003)

    Google Scholar 

  30. Otero, C.E., Peter, A.: Research directions for engineering big data analytics software. IEEE Intell. Syst. 30(1), 13–19 (2014)

    Article  Google Scholar 

  31. Pramanik, S., Bandyopadhyay, S.K.: Analysis of big data. In: Encyclopedia of Data Science and Machine Learning, pp. 97–115. IGI Global (2023)

    Google Scholar 

  32. Saeed, N., Elzanaty, A., Almorad, H., Dahrouj, H., Al-Naffouri, T.Y., Alouini, M.S.: Cubesat communications: recent advances and future challenges. IEEE Commun. Surv. Tutor. 22(3), 1839–1862 (2020)

    Article  Google Scholar 

  33. Segura, S., Fraser, G., Sanchez, A.B., Ruiz-Cortés, A.: A survey on metamorphic testing. IEEE Trans. Software Eng. 42(9), 805–824 (2016)

    Article  Google Scholar 

  34. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline. Prentice-Hall, Inc., Upper Saddle River (1996)

    Google Scholar 

  35. de Sousa Barros, J., Oliveira, T., Nigam, V., Brito, A.V.: A framework for the analysis of UAV strategies using co-simulation. In: 2016 VI Brazilian Symposium on Computing Systems Engineering (SBESC), pp. 9–15. IEEE (2016)

    Google Scholar 

  36. Sri, P.A., Anusha, M.: Big data-survey. Indonesian J. Electr. Eng. Inform. (IJEEI) 4(1), 74–80 (2016)

    Google Scholar 

  37. Tsay, Y.-K., Chen, Y.-F., Tsai, M.-H., Wu, K.-N., Chan, W.-C.: GOAL: a graphical tool for manipulating büchi automata and temporal formulae. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 466–471. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_35

    Chapter  Google Scholar 

  38. Ziegert, S., Wehrheim, H.: Temporal plans for software architecture reconfiguration. Comput. Sci.-Res. Dev. 30, 303–320 (2015)

    Article  Google Scholar 

  39. Zudaire, S., Gorostiaga, F., Sánchez, C., Schneider, G., Uchitel, S.: Assumption monitoring using runtime verification for UAV temporal task plan executions. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 6824–6830. IEEE (2021)

    Google Scholar 

  40. Zudaire, S.A., Nahabedian, L., Uchitel, S.: Assured mission adaptation of UAVs. ACM Trans. Auton. Adapt. Syst. (TAAS) 16(3–4), 1–27 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Asteasuain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asteasuain, F. (2023). New Horizons for Metamorphic Relationships in Formal Verification. In: Pesado, P. (eds) Computer Science – CACIC 2022. CACIC 2022. Communications in Computer and Information Science, vol 1778. Springer, Cham. https://doi.org/10.1007/978-3-031-34147-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34147-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34146-5

  • Online ISBN: 978-3-031-34147-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics