Skip to main content

Review of Modern Technologies of Computer Vision

  • Conference paper
  • First Online:
Current Problems in Applied Mathematics and Computer Science and Systems (APAMCS 2022)

Abstract

Today, the use of artificial intelligence technologies is becoming more and more popular. Scientific and technological progress contributes to increasing the power of hardware, as well as obtaining effective methods for implementing methods such as machine learning, neural networks, and deep learning. This created the possibility of creating effective methods for recognizing images and video data, which is what computer vision is. At the time of 2022, a huge number of methods, technologies, and techniques for using computer vision were received, in this paper a study was conducted on the use of computer vision in 2022. Results were obtained on the decrease in the popularity of computer vision in the scientific community, its introduction into industry, medicine, zoology and human social life, the most popular method of computer vision is the ResNet neural network model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchell, T., Buchanan, B., DeJong, G., Dietterich, T., Rosenbloom, P., Waibel, A.: Machine learning. Annu. Rev. Comput. Sci. 4(1), 417–433 (1990)

    Article  Google Scholar 

  2. Shapiro, L.G., Stockman, G.C.: Computer Vision, vol. 3. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  3. Lei, Y., et al.: Development of a slow loris computer vision detection model. Animals 12(12), 1553 (2022)

    Article  Google Scholar 

  4. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  5. Yao, J., Qi, J., Zhang, J., Shao, H., Yang, J., Li, X.: A real-time detection algorithm for Kiwifruit defects based on YOLOv5. Electronics 10(14), 1711 (2021)

    Article  Google Scholar 

  6. O'Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015)

  7. Ciotti, M., Ciccozzi, M., Terrinoni, A., Jiang, W.C., Wang, C.B., Bernardini, S.: The COVID-19 pandemic. Crit. Rev. Clin. Lab. Sci. 57(6), 365–388 (2020)

    Article  Google Scholar 

  8. Crespo, F., Crespo, A., Sierra-Martínez, L.M., Peluffo-Ordóñez, D.H., Morocho-Cayamcela, M.E.: A computer vision model to identify the incorrect use of face masks for COVID-19 awareness. Appl. Sci. 12(14), 6924 (2022)

    Google Scholar 

  9. Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: a face detection benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5525–5533 (2016)

    Google Scholar 

  10. Batagelj, B., Peer, P., Štruc, V., Dobrišek, S.: How to correctly detect face-masks for covid-19 from visual information? Appl. Sci. 11(5), 2070 (2021)

    Article  Google Scholar 

  11. Ge, S., Li, J., Ye, Q., Luo, Z.: Detecting masked faces in the wild with LLE-CNNs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2682–2690 (2017)

    Google Scholar 

  12. Deng, J., Guo, J., Ververas, E., Kotsia, I., Zafeiriou, S.: Retinaface: single-shot multi-level face localisation in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5203–5212 (2020)

    Google Scholar 

  13. Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: generalizing residual architectures. arXiv preprint arXiv:1603.08029 (2016)

  14. Zhang, H., et al.: Resnet: split-attention networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2736–2746 (2022)

    Google Scholar 

  15. Amari, S.I.: Backpropagation and stochastic gradient descent method. Neurocomputing 5(4–5), 185–196 (1993)

    Article  MATH  Google Scholar 

  16. Dehghani, M., Gritsenko, A., Arnab, A., Minderer, M., Tay, Y.: Scenic: a JAX library for computer vision research and beyond. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21393–21398 (2022)

    Google Scholar 

  17. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  18. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  19. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR, July 2021

    Google Scholar 

  20. Tolstikhin, I.O., et al.: MLP-mixer: an all-MLP architecture for vision. Adv. Neural. Inf. Process. Syst. 34, 24261–24272 (2021)

    Google Scholar 

  21. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(140), 1–67 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  23. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: a video vision transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6836–6846 (2021)

    Google Scholar 

  24. Tay, Y., et al.: Omninet: omnidirectional representations from transformers. In: International Conference on Machine Learning, pp. 10193–10202. PMLR, July 2021

    Google Scholar 

  25. Dehghani, M., et al.: The benchmark lottery. arXiv preprint arXiv:2107.07002 (2021)

  26. Dehghani, M., Arnab, A., Beyer, L., Vaswani, A., Tay, Y.: The efficiency misnomer. arXiv preprint arXiv:2110.12894 (2021)

  27. Su, J., Zhou, C., Chen, H., Xia, N., Shi, Z.: The physical and mechanical properties for flexible biomass particles using computer vision. Fuel 315, 123278 (2022)

    Article  Google Scholar 

  28. Kroetsch, D., Wang, C.: Particle size distribution. Soil Sampling Methods Anal. 2, 713–725 (2008)

    Google Scholar 

  29. Toolbox, S.M.: Matlab. Mathworks Inc. (1993)

    Google Scholar 

  30. Stefenon, S.F., et al.: Classification of insulators using neural network based on computer vision. IET Gener. Transm. Distrib. 16(6), 1096–1107 (2022)

    Article  Google Scholar 

  31. Bradski, G., Kaehler, A.: OpenCV. Dr. Dobb’s J. Softw. Tools 3, 120 (2000)

    Google Scholar 

  32. Wood, D.A., et al.: Deep learning to automate the labelling of head MRI datasets for computer vision applications. Eur. Radiol. 32(1), 725–736 (2021). https://doi.org/10.1007/s00330-021-08132-0

    Article  Google Scholar 

  33. Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)

    Article  Google Scholar 

  34. Patrício, D.I., Rieder, R.: Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review. Comput. Electron. Agric. 153, 69–81 (2018)

    Article  Google Scholar 

  35. Gupta, A., Pandey, A., Kesarwani, H., Sharma, S., Saxena, A.: Automated determination of interfacial tension and contact angle using computer vision for oil field applications. J. Petrol. Explor. Prod. Technol. 12, 1–9 (2021). https://doi.org/10.1007/s13202-021-01398-6

    Article  Google Scholar 

  36. Navarro Soto, J., Satorres Martínez, S., Martínez Gila, D., Gómez Ortega, J., Gámez García, J.: Fast and reliable determination of virgin olive oil quality by fruit inspection using computer vision. Sensors 18(11), 3826 (2018)

    Google Scholar 

  37. Sherine, A., Peter, G., Stonier, A.A., Praghash, K., Ganji, V: CMY color spaced-based visual cryptography scheme for secret sharing of data. Wirel. Commun. Mob. Comput. (2022)

    Google Scholar 

Download references

Acknowledgments

This work was carried out at the North Caucasus Center for Mathematical Research within agreement no. 075-02-2022-892 with the Ministry of Science and Higher Education of the Russian Federation. The reported study was funded by RFBR, Sirius University of Science and Technology, JSC Russian Railways and Educational Fund “Talent and success”, project number 20-37-51004 "Efficient intelligent data management system for edge, fog, and cloud computing with adjustable fault tolerance and security”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Bezuglova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bezuglova, E., Gladkov, A., Valuev, G. (2023). Review of Modern Technologies of Computer Vision. In: Alikhanov, A., Lyakhov, P., Samoylenko, I. (eds) Current Problems in Applied Mathematics and Computer Science and Systems. APAMCS 2022. Lecture Notes in Networks and Systems, vol 702. Springer, Cham. https://doi.org/10.1007/978-3-031-34127-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34127-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34126-7

  • Online ISBN: 978-3-031-34127-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics