Skip to main content

Fusion of Learned Representations for Multimodal Sensor Data Classification

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2023)

Abstract

Time-Series data collected using body-worn sensors can be used to recognize activities of interest in various medical applications such as sleep studies. Recent advances in other domains, such as image recognition and natural language processing have shown that unlabeled data can still be useful when self-supervised techniques such as contrastive learning are used to generate meaningful feature space representations. Labeling data for Human Activity Recognition (HAR) and sleep disorder diagnosis (polysomnography) is difficult and requires trained professionals. In this work, we apply learned feature representation techniques to multimodal time-series data. By using signal-specific representations, based on self-supervised and supervised learning, the channels can be evaluated to determine if they are likely to contribute to correct classification. The learned representation embeddings are then used to process each channel into a new feature space that serves as input into a neural network. This results in a better understanding of the importance of each signal modality as well as the potential applicability of newer self-supervised techniques to time-series data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/imics-lab/fusion-of-learned-representations.

References

  1. Allocca, G., et al.: Validation of ‘Somnivore’, a machine learning algorithm for automated scoring and analysis of polysomnography data. Front. Neurosci. 13, 207 (2019)

    Article  Google Scholar 

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  3. Choi, S.H., et al.: Real-time apnea-hypopnea event detection during sleep by convolutional neural networks. Comput. Biol. Med. 100, 123–131 (2018)

    Article  Google Scholar 

  4. Ding, L., Peng, J., Song, L., Zhang, X.: Automatically detecting Apnea-Hypopnea snoring signal based on VGG19+ LSTM. Biomed. Sig. Process. Control 80, 104351 (2023)

    Article  Google Scholar 

  5. Dwibedi, D., Aytar, Y., Tompson, J., Sermanet, P., Zisserman, A.: With a little help from my friends: nearest-neighbor contrastive learning of visual representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9588–9597 (2021)

    Google Scholar 

  6. Empatica: E4 wristband user’s manual, rev. 2.0. https://empatica.app.box.com/v/E4-User-Manual (2020). Accessed 09 Jun 2022

  7. Hinkle, L.B., Atkinson, G., Metsis, V.: TWristAR - wristband activity recognition, January 2022, Online. https://doi.org/10.5281/zenodo.5911808

  8. Hinkle, L.B., Metsis, V.: Model evaluation approaches for human activity recognition from time-series data. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds.) AIME 2021. LNCS (LNAI), vol. 12721, pp. 209–215. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77211-6_23

    Chapter  Google Scholar 

  9. Hinkle, L.B., Metsis, V.: Unlabeled Empatica E4 Wristband Data (UE4W) Dataset, July 2022, Online. https://doi.org/10.5281/zenodo.6898244

  10. Kokkalas, L., Korompili, G., Tatlas, N.A., Mitilineos, S.A., Potirakis, S.M.: Severe obstructive sleep apnea event detection from EEG recordings. In: Presented at 2nd International Electronic Conference on Applied Sciences, vol. 15, p. 31 (2021)

    Google Scholar 

  11. Korompili, G., et al.: PSG-audio, a scored polysomnography dataset with simultaneous audio recordings for sleep apnea studies. Sci. Data 8(1), 1–13 (2021)

    Article  Google Scholar 

  12. Korompili, G., et al.: PSG-Audio, March 2022. https://doi.org/10.11922/sciencedb.00345

  13. Lahat, D., Adali, T., Jutten, C.: Multimodal data fusion: an overview of methods, challenges, and prospects. Proc. IEEE 103(9), 1449–1477 (2015)

    Article  Google Scholar 

  14. Levy, P., Pépin, J.L., Deschaux-Blanc, C., Paramelle, B., Brambilla, C.: Accuracy of oximetry for detection of respiratory disturbances in sleep apnea syndrome. Chest 109(2), 395–399 (1996)

    Article  Google Scholar 

  15. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  16. Mohsenvand, M.N., Izadi, M.R., Maes, P.: Contrastive representation learning for electroencephalogram classification. In: Machine Learning for Health, pp. 238–253. PMLR (2020)

    Google Scholar 

  17. Mondal, A., Jain, V., Siddiqi, K.: Mini-batch similarity graphs for robust image classification (2012)

    Google Scholar 

  18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Piorecky, M., et al.: Apnea detection in polysomnographic recordings using machine learning techniques. Diagnostics 11(12), 2302 (2021)

    Article  Google Scholar 

  20. Qian, H., Tian, T., Miao, C.: What makes good contrastive learning on small-scale wearable-based tasks? arXiv preprint arXiv:2202.05998 (2022)

  21. Sleeman IV, W.C., Kapoor, R., Ghosh, P.: Multimodal classification: current landscape, taxonomy and future directions. arXiv preprint arXiv:2109.09020 (2021)

  22. Xu, H., Zhou, P., Tan, R., Li, M., Shen, G.: LIMU-BERT: unleashing the potential of unlabeled data for IMU sensing applications. In: Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, pp. 220–233 (2021)

    Google Scholar 

  23. Zhao, A., Dong, J., Zhou, H.: Self-supervised learning from multi-sensor data for sleep recognition. IEEE Access 8, 93907–93921 (2020)

    Article  Google Scholar 

  24. Zinchuk, A.V., et al.: Polysomnographic phenotypes and their cardiovascular implications in obstructive sleep apnoea. Thorax 73(5), 472–480 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gentry Atkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hinkle, L.B., Atkinson, G., Metsis, V. (2023). Fusion of Learned Representations for Multimodal Sensor Data Classification. In: Maglogiannis, I., Iliadis, L., MacIntyre, J., Dominguez, M. (eds) Artificial Intelligence Applications and Innovations. AIAI 2023. IFIP Advances in Information and Communication Technology, vol 675. Springer, Cham. https://doi.org/10.1007/978-3-031-34111-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34111-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34110-6

  • Online ISBN: 978-3-031-34111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics