Skip to main content

Hierarchical Geodesic Polynomial Model for Multilevel Analysis of Longitudinal Shape

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Abstract

Longitudinal analysis is a core aspect of many medical applications for understanding the relationship between an anatomical subject’s function and its trajectory of shape change over time. Whereas mixed-effects (or hierarchical) modeling is the statistical method of choice for analysis of longitudinal data, we here propose its extension as hierarchical geodesic polynomial model (HGPM) for multilevel analyses of longitudinal shape data. 3D shapes are transformed to a non-Euclidean shape space for regression analysis using geodesics on a high dimensional Riemannian manifold. At the subject-wise level, each individual trajectory of shape change is represented by a univariate geodesic polynomial model on timestamps. At the population level, multivariate polynomial expansion is applied to uni/multivariate geodesic polynomial models for both anchor points and tangent vectors. As such, the trajectory of an individual subject’s shape changes over time can be modeled accurately with a reduced number of parameters, and population-level effects from multiple covariates on trajectories can be well captured. The implemented HGPM is validated on synthetic examples of points on a unit 3D sphere. Further tests on clinical 4D right ventricular data show that HGPM is capable of capturing observable effects on shapes attributed to changes in covariates, which are consistent with qualitative clinical evaluations. HGPM demonstrates its effectiveness in modeling shape changes at both subject-wise and population levels, which is promising for future studies of the relationship between shape changes over time and the level of dysfunction severity on anatomical objects associated with disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernal-Rusiel, J.L., et al.: Statistical analysis of longitudinal neuroimage data with linear mixed effects models. Neuroimage 66, 249–260 (2013)

    Article  Google Scholar 

  2. do Carmo, M.P.: Differential Geometry of Curves and Sur4. Prentice Hall (1976)

    Google Scholar 

  3. Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., Ayache, N.: Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. Int. J. Comput. Vision 103(1), 22–59 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 297–304. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04268-3_37

    Chapter  Google Scholar 

  5. Fishbaugh, J., Gerig, G.: Acceleration controlled diffeomorphisms for nonparametric image regression. In: ISBI, pp. 1488–1491 (2019)

    Google Scholar 

  6. Fletcher, P.T.: Geodesic regression on riemannian manifolds. In: MICCAI MFCA, pp. 75–86 (2011). https://hal.inria.fr/inria-00623920

  7. Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. IJCV 105(2), 171–185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guigui, N., Maignant, E., Trouvé, A., Pennec, X.: Parallel transport on kendall shape spaces. In: GSI, pp. 103–110 (2021)

    Google Scholar 

  9. Hinkle, J., Muralidharan, P., Fletcher, P.T., Joshi, S.: Polynomial regression on Riemannian manifolds. In: ECCV, pp. 1–14 (2012)

    Google Scholar 

  10. Hinkle, J., Muralidharan, P., Fletcher, P.T., Joshi, S.: Intrinsic polynomials for regression on Riemannian manifolds. J. Math. Imaging Vision (2014)

    Google Scholar 

  11. Hong, S., Fishbaugh, J., Wolff, J.J., Styner, M.A., Gerig, G.: Hierarchical multi-geodesic model for longitudinal analysis of temporal trajectories of anatomical shape and covariates. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 57–65. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_7

    Chapter  Google Scholar 

  12. Klingenberg, C.P.: Walking on Kendall’s shape space: understanding shape spaces and their coordinate systems. Evol. Biol. 47, 1–19 (2020)

    Article  Google Scholar 

  13. Lorenzi, M., Pennec, X., Frisoni, G.B., Ayache, N., Initiative, A.D.N., et al.: Disentangling normal aging from Alzheimer’s disease in structural magnetic resonance images. Neurobiol. Aging 36, S42–S52 (2015)

    Article  Google Scholar 

  14. Lou, A., Katsman, I., Jiang, Q., Belongie, S., Lim, S.N., De Sa, C.: Differentiating through the fréchet mean. In: ICML (2020)

    Google Scholar 

  15. Nava-Yazdani, E., Hege, H.C., Sullivan, T.J., von Tycowicz, C.: Geodesic analysis in Kendall’s shape space with epidemiological applications. J. Math. Imaging Vision 62(4), 549–559 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nava-Yazdani, E., Hege, H.C., von Tycowicz, C.: A hierarchical geodesic model for longitudinal analysis on manifolds. J. Math. Imaging Vis. 64(4), 395–407 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sadeghi, N., Prastawa, M., Fletcher, P.T., Wolff, J., Gilmore, J.H., Gerig, G.: Regional characterization of longitudinal DT-MRI to study white matter maturation of the early developing brain. Neuroimage 68, 236–247 (2013)

    Article  Google Scholar 

  18. Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: A hierarchical geodesic model for diffeomorphic longitudinal shape analysis. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 560–571. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38868-2_47

    Chapter  Google Scholar 

  19. Woltman, H., Feldstain, A., MacKay, J.C., Rocchi, M.: An introduction to hierarchical linear modeling. Tutor. Quant. Methods Psychol. 8(1), 52–69 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Fishbaugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, Y. et al. (2023). Hierarchical Geodesic Polynomial Model for Multilevel Analysis of Longitudinal Shape. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics