Skip to main content

Noise2Contrast: Multi-contrast Fusion Enables Self-supervised Tomographic Image Denoising

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Abstract

Self-supervised image denoising techniques emerged as convenient methods that allow training denoising models without requiring ground-truth noise-free data. Existing methods usually optimize loss metrics that are calculated from multiple noisy realizations of similar images, e.g., from neighboring tomographic slices. However, those approaches fail to utilize the multiple contrasts that are routinely acquired in medical imaging modalities like MRI or dual-energy CT. In this work, we propose the new self-supervised training scheme Noise2Contrast that combines information from multiple measured image contrasts to train a denoising model. We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss. The trained denoising operator achieves convincing quantitative and qualitative results, outperforming state-of-the-art self-supervised methods by 4.7–11.0%/4.8–7.3% (PSNR/SSIM) on brain MRI data and by 43.6–50.5%/57.1–77.1% (PSNR/SSIM) on dual-energy CT X-ray microscopy data with respect to the noisy baseline. Our experiments on different real measured data sets indicate that Noise2Contrast training generalizes to other multi-contrast imaging modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batson, J., Royer, L.: Noise2Self: blind denoising by self-supervision. In: Proceedings of the ICML, pp. 524–533. PMLR (2019)

    Google Scholar 

  2. Choi, K., Lim, J.S., Kim, S.: Self-supervised inter-and intra-slice correlation learning for low-dose CT image restoration without ground truth. Expert Syst. Appl. 209, 118072 (2022)

    Google Scholar 

  3. Denck, J., Guehring, J., Maier, A., Rothgang, E.: Enhanced magnetic resonance image synthesis with contrast-aware generative adversarial networks. J. Imaging 7(8), 133 (2021)

    Article  Google Scholar 

  4. Genant, H.K., Boyd, D.: Quantitative bone mineral analysis using dual energy computed tomography. Investig. Radiol. 12(6), 545–551 (1977)

    Article  Google Scholar 

  5. Jeon, S.Y., Kim, W., Choi, J.H.: MM-net: multi-frame and multi-mask-based unsupervised deep denoising for low-dose computed tomography. IEEE TRPMS 1–12 (2022)

    Google Scholar 

  6. Kim, K., Kwon, T., Ye, J.C.: Noise distribution adaptive self-supervised image denoising using tweedie distribution and score matching. In: Proceedings of the CVPR, pp. 2008–2016 (2022)

    Google Scholar 

  7. Krull, A., Buchholz, T.O., Jug, F.: Noise2Void-learning denoising from single noisy images. In: Proceedings of the CVPR, pp. 2129–2137 (2019)

    Google Scholar 

  8. Lehtinen, J., et al.: Noise2Noise: learning image restoration without clean data. In: Proceedings of the PMLR, vol. 80, pp. 2965–2974. PMLR (2018)

    Google Scholar 

  9. Maier, A.K., et al.: Learning with known operators reduces maximum error bounds. Nat. Mach. Intell. 1(8), 373–380 (2019)

    Article  Google Scholar 

  10. Prah, D.E., Paulson, E.S., Nencka, A.S., Schmainda, K.M.: A simple method for rectified noise floor suppression: phase-corrected real data reconstruction with application to diffusion-weighted imaging. Magn. Reson. Med. 64(2), 418–429 (2010)

    Article  Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Schmainda, K.M., Prah, M.A.: Data from brain-tumor-progression. Technical report Version 1, The Cancer Imaging Archive (2018). https://doi.org/10.7937/K9/TCIA.2018.15quzvnb

  13. Thies, M., et al.: Calibration by differentiation-self-supervised calibration for X-ray microscopy using a differentiable cone-beam reconstruction operator. J. Microsc. 287(2), 81–92 (2022)

    Article  Google Scholar 

  14. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the ICCV, pp. 839–846. IEEE (1998)

    Google Scholar 

  15. Wagner, F., et al.: Trainable joint bilateral filters for enhanced prediction stability in low-dose CT. Sci. Rep. 12(1), 1–9 (2022)

    Article  MathSciNet  Google Scholar 

  16. Wagner, F., et al.: Ultralow-parameter denoising: trainable bilateral filter layers in computed tomography. Med. Phys. 49(8), 5107–5120 (2022)

    Article  Google Scholar 

  17. Wagner, F., et al.: Monte Carlo dose simulation for in-vivo X-ray nanoscopy. In: Maier-Hein, K., Deserno, T.M., Handels, H., Maier, A., Palm, C., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2022. Informatik aktuell, pp. 107–112. Springer, Wiesbaden (2022). https://doi.org/10.1007/978-3-658-36932-3_22

    Chapter  Google Scholar 

  18. Wu, D., Ren, H., Li, Q.: Self-supervised dynamic CT perfusion image denoising with deep neural networks. IEEE Trans. Radiat. Plasma Med. Sci. 5(3), 350–361 (2020)

    Article  Google Scholar 

  19. Zhang, Z., Liang, X., Zhao, W., Xing, L.: Noise2Context: context-assisted learning 3D thin-layer for low-dose CT. Med. Phys. 48(10), 5794–5803 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (ERC Grant No. 810316) and a GPU donation through the NVIDIA Hardware Grant Program.

F.W. conceived and conducted the experiments. M.T., L.P., N.M., M.G., J.U., and J.-H.C. provided valuable technical feedback during development. S.P., O.A., D.W., G.N., and S.U. prepared and scanned the bone samples. A.M. supervised the project. All authors reviewed the manuscript. L.P. and N.M. are employees of Siemens Healthcare GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wagner, F. et al. (2023). Noise2Contrast: Multi-contrast Fusion Enables Self-supervised Tomographic Image Denoising. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics