Skip to main content

HALOS: Hallucination-Free Organ Segmentation After Organ Resection Surgery

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13939))

Included in the following conference series:

  • 2025 Accesses

Abstract

The wide range of research in deep learning-based medical image segmentation pushed the boundaries in a multitude of applications. A clinically relevant problem that received less attention is the handling of scans with irregular anatomy, e.g., after organ resection. State-of-the-art segmentation models often lead to organ hallucinations, i.e., false-positive predictions of organs, which cannot be alleviated by oversampling or post-processing. Motivated by the increasing need to develop robust deep learning models, we propose HALOS for abdominal organ segmentation in MR images that handles cases after organ resection surgery. To this end, we combine missing organ classification and multi-organ segmentation tasks into a multi-task model, yielding a classification-assisted segmentation pipeline. The segmentation network learns to incorporate knowledge about organ existence via feature fusion modules. Extensive experiments on a small labeled test set and large-scale UK Biobank data demonstrate the effectiveness of our approach in terms of higher segmentation Dice scores and near-to-zero false positive prediction rate.

A.-M. Rickmann and M. Xu—The authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bamberg, F., et al.: Subclinical disease burden as assessed by whole-body MRI in subjects with prediabetes, subjects with diabetes, and normal control subjects from the general population: the KORA-MRI study. Diabetes 66(1), 158–169 (2017)

    Article  Google Scholar 

  2. Bamberg, F., et al.: Whole-body MR imaging in the German national cohort: rationale, design, and technical background. Radiology 277(1), 206–220 (2015)

    Article  Google Scholar 

  3. Bobo, M.F., et al.: Fully convolutional neural networks improve abdominal organ segmentation. In: Medical Imaging 2018: Image Processing, vol. 10574, p. 105742V. International Society for Optics and Photonics (2018)

    Google Scholar 

  4. Chen, Y., et al.: Fully automated multi-organ segmentation in abdominal magnetic resonance imaging with deep neural networks. Med. Phys. 47(10), 4971 (2020)

    Article  Google Scholar 

  5. Gibson, E., et al.: Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Trans. Med. Imaging 37(8), 1822–1834 (2018)

    Article  Google Scholar 

  6. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69(3), 1173–1185 (2021)

    Article  Google Scholar 

  7. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  8. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  9. Kart, T., et al.: Automated imaging-based abdominal organ segmentation and quality control in 20,000 participants of the UK Biobank and German national cohort studies. Sci. Rep. 12(1), 1–11 (2022)

    Article  Google Scholar 

  10. Littlejohns, T.J., et al.: The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat. Commun. 11(1), 1–12 (2020)

    Article  Google Scholar 

  11. Liu, L., Wolterink, J.M., Brune, C., Veldhuis, R.N.: Anatomy-aided deep learning for medical image segmentation: a review. Phys. Med. Biol. 66(11), 11TR01 (2021)

    Article  Google Scholar 

  12. Liu, Z., et al.: Deep learning based brain tumor segmentation: a survey. Complex Intell. Syst. 9(1), 1001–1026 (2023)

    Article  Google Scholar 

  13. Mehta, S., Mercan, E., Bartlett, J., Weaver, D., Elmore, J.G., Shapiro, L.: Y-Net: joint segmentation and classification for diagnosis of breast biopsy images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 893–901. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_99

    Chapter  Google Scholar 

  14. Mlynarski, P., Delingette, H., Criminisi, A., Ayache, N.: Deep learning with mixed supervision for brain tumor segmentation. J. Med. Imaging 6(3), 034002 (2019)

    Article  Google Scholar 

  15. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2017)

    Article  Google Scholar 

  16. Rickmann, A.M., Senapati, J., Kovalenko, O., Peters, A., Bamberg, F., Wachinger, C.: AbdomenNet: deep neural network for abdominal organ segmentation in epidemiologic imaging studies. BMC Med. Imaging 22(1), 1–11 (2022)

    Article  Google Scholar 

  17. Roth, H.R., et al.: Hierarchical 3D fully convolutional networks for multi-organ segmentation. arXiv preprint arXiv:1704.06382 (2017)

  18. Roy, A.G., Conjeti, S., Navab, N., Wachinger, C., Initiative, A.D.N.: QuickNAT: a fully convolutional network for quick and accurate segmentation of neuroanatomy. Neuroimage 186, 713–727 (2019)

    Article  Google Scholar 

  19. Suzuki, M., Linguraru, M.G., Okada, K.: Multi-organ segmentation with missing organs in abdominal CT images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 418–425. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_52

    Chapter  Google Scholar 

  20. Tilborghs, S., Bertels, J., Robben, D., Vandermeulen, D., Maes, F.: The dice loss in the context of missing or empty labels: introducing \(\Phi \) and \(\epsilon \). In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). LNCS, vol. 13435, pp. 527–537. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_51

  21. Wang, Y., Zhou, Y., Shen, W., Park, S., Fishman, E.K., Yuille, A.L.: Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Med. Image Anal. 55, 88–102 (2019)

    Article  Google Scholar 

  22. Wolf, T.N., Pölsterl, S., Wachinger, C., Initiative, A.D.N., et al.: DAFT: a universal module to interweave tabular data and 3D images in CNNs. Neuroimage 260, 119505 (2022)

    Article  Google Scholar 

  23. Wu, Y.H., et al.: JCS: an explainable COVID-19 diagnosis system by joint classification and segmentation. IEEE Trans. Image Process. 30, 3113–3126 (2021)

    Article  Google Scholar 

  24. Zhou, Y., et al.: Prior-aware neural network for partially-supervised multi-organ segmentation. In: ICCV (2019)

    Google Scholar 

Download references

Acknowledgment

This research was partially supported by the Bavarian State Ministry of Science and the Arts and coordinated by the bidt, the BMBF (DeepMentia, 031L0200A), the DFG and the LRZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Marie Rickmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rickmann, AM., Xu, M., Wolf, T.N., Kovalenko, O., Wachinger, C. (2023). HALOS: Hallucination-Free Organ Segmentation After Organ Resection Surgery. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics