Skip to main content

MetaMorph: Learning Metamorphic Image Transformation with Appearance Changes

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13939))

Included in the following conference series:

Abstract

This paper presents a novel predictive model, MetaMorph, for metamorphic registration of images with appearance changes (i.e., caused by brain tumors). In contrast to previous learning-based registration methods that have little or no control over appearance-changes, our model introduces a new regularization that can effectively suppress the negative effects of appearance changing areas. In particular, we develop a piecewise regularization on the tangent space of diffeomorphic transformations (also known as initial velocity fields) via learned segmentation maps of abnormal regions. The geometric transformation and appearance changes are treated as joint tasks that are mutually beneficial. Our model MetaMorph is more robust and accurate when searching for an optimal registration solution under the guidance of segmentation, which in turn improves the segmentation performance by providing appropriately augmented training labels. We validate MetaMorph on real 3D human brain tumor magnetic resonance imaging (MRI) scans. Experimental results show that our model outperforms the state-of-the-art learning-based registration models. The proposed MetaMorph has great potential in various image-guided clinical interventions, e.g., real-time image-guided navigation systems for tumor removal surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation. arXiv preprint arXiv:1802.06955 (2018)

  2. Arnold, V.: Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. In: Annales de l’institut Fourier, vol. 16, pp. 319–361 (1966)

    Google Scholar 

  3. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-Euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006). https://doi.org/10.1007/11866565_113

    Chapter  Google Scholar 

  4. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  5. Baid, U., et al.: The RSNA-ASNR-MICCAI brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  6. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  7. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  MATH  Google Scholar 

  8. Bône, A., Vernhet, P., Colliot, O., Durrleman, S.: Learning joint shape and appearance representations with metamorphic auto-encoders. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 202–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_20

    Chapter  Google Scholar 

  9. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  10. Chen, J., Frey, E.C., He, Y., Segars, W.P., Li, Y., Du, Y.: TransMorph: transformer for unsupervised medical image registration. Med. Image Anal. 82, 102615 (2022)

    Article  Google Scholar 

  11. Chen, M., Kanade, T., Pomerleau, D., Rowley, H.A.: Anomaly detection through registration. Pattern Recogn. 32(1), 113–128 (1999)

    Article  Google Scholar 

  12. Chung, A.C.S., Wells, W.M., Norbash, A., Grimson, W.E.L.: Multi-modal image registration by minimising Kullback-Leibler distance. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 525–532. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45787-9_66

    Chapter  Google Scholar 

  13. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  14. François, A., Gori, P., Glaunès, J.: Metamorphic image registration using a semi-Lagrangian scheme. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2021. LNCS, vol. 12829, pp. 781–788. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80209-7_84

    Chapter  Google Scholar 

  15. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  16. Holm, D., Trouvé, A., Younes, L.: The Euler-Poincaré theory of metamorphosis. Q. Appl. Math. 67(4), 661–685 (2009)

    Article  MATH  Google Scholar 

  17. Kim, B., Han, I., Ye, J.C.: DiffuseMorph: unsupervised deformable image registration along continuous trajectory using diffusion models. arXiv preprint arXiv:2112.05149 (2021)

  18. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  19. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  20. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Niethammer, M., et al.: Geometric metamorphosis. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 639–646. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23629-7_78

    Chapter  Google Scholar 

  22. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  23. Patenaude, B., Smith, S.M., Kennedy, D.N., Jenkinson, M.: A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56(3), 907–922 (2011)

    Article  Google Scholar 

  24. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)

    Article  Google Scholar 

  25. Qin, C., Shi, B., Liao, R., Mansi, T., Rueckert, D., Kamen, A.: Unsupervised deformable registration for multi-modal images via disentangled representations. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 249–261. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_19

    Chapter  Google Scholar 

  26. Rao, A., Aljabar, P., Rueckert, D.: Hierarchical statistical shape analysis and prediction of sub-cortical brain structures. Med. Image Anal. 12(1), 55–68 (2008)

    Article  Google Scholar 

  27. Riklin-Raviv, T., Van Leemput, K., Menze, B.H., Wells, W.M., III., Golland, P.: Segmentation of image ensembles via latent atlases. Med. Image Anal. 14(5), 654–665 (2010)

    Article  Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int. J. Comput. Vis. 97(2), 229–241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wachinger, C., Golland, P.: Atlas-based under-segmentation. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 315–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_40

    Chapter  Google Scholar 

  31. Wang, J., Zhang, M.: DeepFLASH: an efficient network for learning-based medical image registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4444–4452 (2020)

    Google Scholar 

  32. Wang, J., Zhang, M.: Bayesian atlas building with hierarchical priors for subject-specific regularization. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 76–86. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_8

    Chapter  Google Scholar 

  33. Wang, J., Zhang, M.: Geo-SIC: learning deformable geometric shapes in deep image classifiers. In: The Conference on Neural Information Processing Systems (2022)

    Google Scholar 

  34. Wells, W.M., III., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1), 35–51 (1996)

    Article  Google Scholar 

  35. Zhang, M., Wells, W.M., Golland, P.: Low-dimensional statistics of anatomical variability via compact representation of image deformations. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 166–173. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_20

    Chapter  Google Scholar 

  36. Zhao, S., Wang, Y., Yang, Z., Cai, D.: Region mutual information loss for semantic segmentation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

Download references

Acknowledgments

This work was supported by NSF CAREER Grant 2239977.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Xing, J., Druzgal, J., Wells, W.M., Zhang, M. (2023). MetaMorph: Learning Metamorphic Image Transformation with Appearance Changes. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics