Skip to main content

Subtype and Stage Inference with Timescales

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Abstract

Neurodegenerative conditions typically have highly heterogeneous trajectories, with variability in both the spatial and temporal progression of neurological changes. Disentangling the variability in spatiotemporal progression patterns offers major benefits for patient stratification and disease understanding but is a complex methodological challenge. Here we present Temporal Subtype and Stage Inference (T-SuStaIn), a technique that uniquely integrates distinct ideas from unsupervised learning: disease progression modelling, clustering, and hidden Markov modelling. We formulate T-SuStaIn mathematically and devise an algorithm for inferring the model parameters and uncertainty. We demonstrate that the combination of disease progression modelling, clustering, and hidden Markov modelling uniquely enables the discovery of subtypes distinguished not just by ordering of abnormality accumulation, but also timescale. We apply T-SuStaIn to longitudinal volumetric imaging data from the Alzheimer’s Disease Neuroimaging Initiative, deriving spatiotemporal Alzheimer’s disease subtypes together with their timelines of evolution and associated uncertainty. T-SuStaIn has broad utility across a range of longitudinal clustering problems, both in neurodegenerative conditions and more widely in progressive diseases.

L. M. Aksman—Joint first author.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For further information see: www.adni-info.org.

References

  1. Villemagne, V.L., Burnham, S., Bourgeat, P., et al.: Amyloid deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 12, 357–367 (2013)

    Article  Google Scholar 

  2. Vogel, J.W., Young, A.L., Oxtoby, N.P., et al.: Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. 27, 871–881 (2021)

    Article  Google Scholar 

  3. Fonteijn, H.M., Modat, M., Clarkson, M.J., et al.: An event-based model for disease progression and its application in familial Alzheimer’s disease and Huntington’s disease. Neuroimage 60, 1880–1889 (2012)

    Article  Google Scholar 

  4. Jedynak, B.M., Lang, A., Liu, B., et al.: A computational neurodegenerative disease progression score: method and results with the Alzheimer’s disease neuroimaging initiative cohort. Neuroimage 15, 1478–1486 (2012)

    Article  Google Scholar 

  5. Donohue, M.C., Jacqmin Gadda, H., Le Goff, M., et al.: Estimating long-term multivariate progression from short-term data. Alzheimer’s Dementia 10, S400–S410 (2014)

    Article  Google Scholar 

  6. Schiratti, J.B., Allassonnière, S., Colliot, O., et al.: A Bayesian mixed-effects model to learn trajectories of changes from repeated manifold-valued observations. J. Mach. Learn. Res. 18, 1–33 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Lorenzi, M., Filippone, M., Frisoni, G.B., et al.: Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer’s disease. Neuroimage 190, 56–68 (2019)

    Article  Google Scholar 

  8. Oxtoby, N.P., Alexander, D.C.: Imaging plus X: multimodal models of neurodegenerative disease. Curr. Opin. Neurol. 30(4), 371–379 (2019)

    Article  Google Scholar 

  9. Young, A.L., Marinescu, R.V., Oxtoby, N.P., et al.: Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with subtype and stage inference. Nat. Commun. 9 (2018)

    Google Scholar 

  10. Wijeratne, P.A., Alexander, D.C.: Learning transition times in event sequences: the temporal event-based model of disease progression. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 583–595. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_45

    Chapter  Google Scholar 

  11. Poulakis, K., Pereira, J.B., Muehlboeck, J.S., et al.: Multi-cohort and longitudinal Bayesian clustering study of stage and subtype in Alzheimer’s disease. Nat. Commun. 13 (2022)

    Google Scholar 

  12. Poulet, P.-E., Durrleman, S.: Mixture modeling for identifying subtypes in disease course mapping. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 571–582. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_44

    Chapter  Google Scholar 

  13. Chen, I.Y., Krishnan, R.G., Sontag, D.: Clustering interval-censored time-series for disease phenotyping. arXiv (2021)

    Google Scholar 

  14. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 257–286 (1989)

    Article  Google Scholar 

  15. Mueller, S.G., Weiner, M.W., Thal, L.J., et al.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. N. Am. 15, 869–877 (2005)

    Article  Google Scholar 

  16. Ferreira, D., Nordberg, A., Westman, E.: Biological subtypes of Alzheimer disease: a systematic review and meta-analysis. Neurology 94 (2020)

    Google Scholar 

  17. Metzner, P., Horenko, I., Schütte, C.: Generator estimation of Markov jump processes based on incomplete observations non-equidistant in time. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 76 (2007)

    Google Scholar 

  18. Aksman, L.M., Wijeratne, P.A., Oxtoby, N.P., et al.: pySuStaIn: a python implementation of the subtype and stage inference algorithm. SoftwareX 16, 100811 (2021)

    Article  Google Scholar 

  19. Young, A.L., Vogel, J.W., Aksman, L.M., et al.: Ordinal sustain: subtype and stage inference for clinical scores, visual ratings, and other ordinal data. Front. Artif. Intell. 4, 613261 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

ALY is supported by an MRC Skills Development Fellowship (MR/T027800/1). Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012) (For a full list of ADNI funders see: https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Leon M. Aksman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Young, A.L., Aksman, L.M., Alexander, D.C., Wijeratne, P.A., for the Alzheimer’s Disease Neuroimaging Initiative. (2023). Subtype and Stage Inference with Timescales. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics