Skip to main content

Understanding of the Muscle and Nerve Tissue

  • Chapter
  • First Online:
Clues for Differential Diagnosis of Neuromuscular Disorders
  • 475 Accesses

Abstract

Neuromuscular disorders describe different situations that disrupt distinct components of the neuromuscular system, which control body movements. The deterioration of movement is generally characteristic of these disorders, and more rare, fatal complications like cardiac and respiratory insufficiency can occur. Neuromuscular disorders can also cause overlapping and non-specific symptoms challenging the differential diagnosis. To better understand neuromuscular disorders and the symptoms observed in them, it is essential to understand the muscle and nerve cells affected by these diseases, as well as their functions. In this chapter, basic information about muscle and nerve tissue from embryology to histology, from anatomy to pathophysiological signal transmission systems, and from genetics to metabolism are explained with original drawings. In addition, its relationship with the symptoms created by the disruptions in normal functioning is emphasised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Megarbane A, Bizzari S, Deepthi A, Sabbagh S, Mansour H, Chouery E, Hmaimess G, Jabbour R, Mehawej C, Alame S, Hani A, Hasbini D, Ghanem I, Koussa S, Al-Ali MT, Obeid M, Talea DB, Lefranc G, Lévy N, Leturcq F, El Hayek S, Delague V, Urtizberea JA. A 20-year clinical and genetic neuromuscular cohort analysis in Lebanon: an international effort. J Neuromuscul Dis. 2022;9(1):193–210. https://doi.org/10.3233/JND-210652.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Haliloglu G. Neonatal presentations of neuromuscular disorders. Eur J Paediatr Neurol. 2022;38:A6–A11. https://doi.org/10.1016/j.ejpn.2022.04.003.

    Article  CAS  PubMed  Google Scholar 

  3. Stemple DL. Structure and function of the notochord: an essential organ for chordate development. Development. 2005;132(11):2503–12. https://doi.org/10.1242/dev.01812.

    Article  CAS  PubMed  Google Scholar 

  4. Kahane N, Kalcheim C. Neural tube development depends on notochord-derived sonic hedgehog released into the sclerotome. Development. 2020;147(10):dev183996. https://doi.org/10.1242/dev.183996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D, Relaix F. The formation of skeletal muscle: from somite to limb. J Anat. 2003;202(1):59–68. https://doi.org/10.1046/j.1469-7580.2003.00139.x.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Romero NB, Mezmezian M, Fidziańska A. Main steps of skeletal muscle development in the human: morphological analysis and ultrastructural characteristics of developing human muscle. Handb Clin Neurol. 2013;113:1299–310. https://doi.org/10.1016/B978-0-444-59565-2.00002-2.

    Article  PubMed  Google Scholar 

  7. Trovato FM, Imbesi R, Conway N, Castrogiovanni P. Morphological and functional aspects of human skeletal muscle. J Funct Morphol Kinesiol. 2016;1:289–302.

    Article  Google Scholar 

  8. Chal J, Pourquié O. Making muscle: skeletal myogenesis in vivo and in vitro. Development. 2017;144:2104–22. https://doi.org/10.1242/dev.151035.

    Article  CAS  PubMed  Google Scholar 

  9. Grinspan JB. Inhibitors of myelination and remyelination, bone morphogenetic proteins, are upregulated in human neurological disease. Neurochem Res. 2020;45(3):656–62. https://doi.org/10.1007/s11064-020-02980-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hubaud A, Pourquié O. Signalling dynamics in vertebrate segmentation. Nat Rev Mol Cell Biol. 2014;15(11):709–21. https://doi.org/10.1038/nrm3891.

    Article  CAS  PubMed  Google Scholar 

  11. Medina LM, Smit TH. Molecular and mechanical cues for somite periodicity. Front Cell Dev Biol. 2021;9:753446. https://doi.org/10.3389/fcell.2021.753446.

    Article  Google Scholar 

  12. Grefte S, Kuijpers-Jagtman AM, Torensma R, Von den Hoff JW. Skeletal muscle development and regeneration. Stem Cells Dev. 2007;16(5):857–68. https://doi.org/10.1089/scd.2007.0058.

    Article  CAS  PubMed  Google Scholar 

  13. Luo H, Lv W, Tong Q, Jin J, Xu Z, Zuo B. Functional non-coding RNA during embryonic myogenesis and postnatal muscle development and disease. Front Cell Dev Biol. 2021;9:628339. https://doi.org/10.3389/fcell.2021.628339.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Buckingham M, Relaix F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol. 2007;23:645–73. https://doi.org/10.1146/annurev.cellbio.23.090506.123438.

    Article  CAS  PubMed  Google Scholar 

  15. Romagnoli C, Iantomasi T, Brandi ML. Available in vitro models for human satellite cells from skeletal muscle. Int J Mol Sci. 2021;22:13221. https://doi.org/10.3390/ijms222413221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sartorelli V, Caretti G. Mechanisms underlying the transcriptional regulation of skeletal myogenesis. Curr Opin Genet Dev. 2005;15(5):528–35. https://doi.org/10.1016/j.gde.2005.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karalaki M, Fili S, Philippou A, Koutsilieris M. Muscle regeneration: cellular and molecular events. In Vivo. 2009;23(5):779–96.

    CAS  PubMed  Google Scholar 

  18. Chargé SBP, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84(1):209–38. https://doi.org/10.1152/physrev.00019.2003.

    Article  PubMed  Google Scholar 

  19. Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cell. 2020;9(9):1970. https://doi.org/10.3390/cells9091970.

    Article  CAS  Google Scholar 

  20. Rahimov F, Kunkel LM. Cellular and molecular mechanisms underlying muscular dystrophy. J Cell Biol. 2013;201(4):499–510. https://doi.org/10.1083/jcb.201212142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Romero NB. Pediatric neurology Part III. In: Handbook of clinical neurology, vol. 113: Main steps of skeletal muscle development in the human; 2013. p. 1299–310. https://doi.org/10.1016/B978-0-444-59565-2.00002-2.

  22. Staron RS, Hagerman FC, Hikida RS, Murray TF, Hostler DP, Crill MT, Ragg KE, Toma K. Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem. 2000;48(5):623–9. https://doi.org/10.1177/002215540004800506.

    Article  CAS  PubMed  Google Scholar 

  23. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91(4):1447–531. https://doi.org/10.1152/physrev.00031.2010.

    Article  CAS  PubMed  Google Scholar 

  24. Pramparo T, Libiger O, Jain S, Li H, Youn YH, Hirotsune S, Schork NJ, Boris AW. Global developmental gene expression and pathway analysis of Normal brain development and mouse models of human neuronal migration defects. PLoS Genet. 2011;7(3):e1001331. https://doi.org/10.1371/journal.pgen.1001331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shyamala K, Yanduri S, Girish HC, Murgod S. Neural crest: the fourth germ layer. J Oral Maxillofac Pathol. 2015;19(2):221–9. https://doi.org/10.4103/0973-029X.164536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stuhlmiller TJ, García-Castro MI. Current perspectives of the signaling pathways directing neural crest induction. Cell Mol Life Sci. 2012;69:3715–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mayanil CS. Transcriptional and epigenetic regulation of neural crest induction during neurulation. Dev Neurosci. 2013;35:361–72.

    Article  CAS  PubMed  Google Scholar 

  28. Prasad MS, Sauka-Spengler T, LaBonne C. Induction of the neural crest state: control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions. Dev Biol. 2012;366:10–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Steventon B, Mayor R. Early neural crest induction requires an initial inhibition of Wnt signals. Dev Biol. 2012;365:196–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Berger P, Sirkowski EE, Scherer SS, Suter U. Expression analysis of the N-Myc downstream-regulated gene 1 indicates that myelinating Schwann cells are the primary disease target in hereditary motor and sensory neuropathy-Lom. Neurobiol Dis. 2004;17(2):290–9. https://doi.org/10.1016/j.nbd.2004.07.014.

    Article  CAS  PubMed  Google Scholar 

  31. Schonkeren SL, Massen M, Van der Horst R, Koch A, Vaes N, Melotte V. Nervous NDRGs: the N-myc downstream–regulated gene family in the central and peripheral nervous system. Neurogenetics. 2019;20:173–86. https://doi.org/10.1007/s10048-019-00587-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Okuda T, Higashi Y, Kokame K, Tanaka C, Kondoh H, Miyata T. Ndrg1-deficient mice exhibit a progressive demyelinating disorder of peripheral nerves. Mol Cell Biol. 2004;24(9):3949–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pawlina W. Muscle Tissue. In: Ross MH, Pawlina W, editors. Histology: a text and atlas. 7th ed. China: Wolters Kluwer Health; 2016. p. 314–55.

    Google Scholar 

  34. Zhang W, Liu Y, Zhang H. Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci. 2021;11:65. https://doi.org/10.1186/s13578-021-00579-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu X, Gao Y, Long X, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ogura T, Wang DO, Ikejima T. Type I collagen promotes the migration and myogenic differentiation of C2C12 myoblasts via the release of interleukin-6 mediated by FAK/NF-kappaB p65 activation. Food Funct. 2020;11(1):328–38. https://doi.org/10.1039/c9fo01346f.

    Article  CAS  PubMed  Google Scholar 

  36. Szent-Györgyi AG. The early history of the biochemistry of muscle contraction. J Gen Physiol. 2004;123(6):631–41. https://doi.org/10.1085/jgp.200409091.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hartman MA, Spudich JA. The myosin superfamily at a glance. J Cell Science. 2012;125(7):1627–32. https://doi.org/10.1242/jcs.094300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Månsson A, Rassier D, Tsiavaliaris G. Poorly understood aspects of striated muscle contraction. Biomed Res Int. 2015;2015:245154. https://doi.org/10.1155/2015/245154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng H, Lederer W. Calcium sparks. Physiol Rev. 2008;88(4):1491–545.

    Article  CAS  PubMed  Google Scholar 

  40. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol. 2010;2(11):a003996. https://doi.org/10.1101/cshperspect.a003996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Györke I, Hester N, Jones LR, Györke S. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J. 2004;86(4):2121–8. https://doi.org/10.1016/S0006-3495(04)74271-X2004.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pawlina W. Nerve tissue. In: Ross MH, Pawlina W, editors. Histology: a text and atlas. 7th ed. China: Wolters Kluwer Health; 2016. p. 356–403.

    Google Scholar 

  43. Carriel V, Garzón I, Alaminos M, Cornelissen M. Histological assessment in peripheral nerve tissue engineering. Neural Regen Res. 2014;9(18):1657–60. https://doi.org/10.4103/1673-5374.141798.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Smith BE. Anatomy and histology of peripheral nerve. In: Kimura J, editor. Handbook of clinical neurophysiology, chap. 1, vol. 7; 2006. p. 3–22. https://doi.org/10.1016/S1567-4231(09)70062-0.

    Chapter  Google Scholar 

  45. Geuna S, Raimondo S, Ronchi G, Di Scipio F, Tos P, Czaja K, Fornaro K. Histology of the peripheral nerve and changes occurring during nerve regeneration. Int Rev Neurobiol. 2009;87:27–46. https://doi.org/10.1016/S0074-7742(09)87003-7.

    Article  PubMed  Google Scholar 

  46. Fields RD. Myelin formation and remodeling. Cell. 2014;156(1–2):15–7. https://doi.org/10.1016/j.cell.2013.12.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Susuki K. Myelin: a specialized membrane for cell communication. Nat Educ. 2010;3(9):59.

    Google Scholar 

  48. Shan Z. The automatic nerve signal transmission and conscious primacy hypothesis. J Behav Brain Sci. 2017;7(4):165–79. https://doi.org/10.4236/jbbs.2017.74014.

    Article  Google Scholar 

  49. Pawlina W. Mitochondria. In: Ross MH, Pawlina W, editors. Histology: a text and atlas. 7th ed. China: Wolters Kluwer Health; 2016. p. 52–5.

    Google Scholar 

  50. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–59. https://doi.org/10.1016/j.cell.2012.02.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kramer P, Bressan P. Our (Mother’s) mitochondria and our mind. Perspect Psychol Sci. 2018;13(1):88–100. https://doi.org/10.1177/1745691617718356.

    Article  PubMed  Google Scholar 

  52. Mandemakers W, Morais VA, De Strooper B. A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J Cell Sci. 2007;120(Pt 10):1707–16. https://doi.org/10.1242/jcs.03443.

    Article  CAS  PubMed  Google Scholar 

  53. Diniz G. Canselin Otobiyografisi. Ankara: Başak matbaacilik; 2009.

    Google Scholar 

  54. Glancy B, Balaban RS. Energy metabolism design of the striated muscle cell. Physiol Rev. 2021;101(4):1561–607. https://doi.org/10.1152/physrev.00040.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulden Diniz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diniz, G., Erdogan, B. (2023). Understanding of the Muscle and Nerve Tissue. In: Diniz, G. (eds) Clues for Differential Diagnosis of Neuromuscular Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-33924-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33924-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33923-3

  • Online ISBN: 978-3-031-33924-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics