Skip to main content

Disorders of the Neuromuscular Junction

  • Chapter
  • First Online:
Clues for Differential Diagnosis of Neuromuscular Disorders

Abstract

Neuromuscular junction is a type of chemical synapse between motor neurons and skeletal muscles. All abnormalities related to the neuromuscular junction cause the myasthenic syndromes. Genetic mutations, autoimmune or paraneoplastic antibodies and toxins are etiological factors that impair the function of neromuscular junction. Clinical history of the patient, neurological examination, antibody screening and electrophysiological tests are usually sufficient for diognosis of neuromuscular junction disorders therefore muscle or nerve biopsy examination is almost never required. However, muscle biopsy examination may occasionally be required in some rare cases or for the differential diagnosis. Histopathological findings that can be seen in neuromuscular junction diseases are minimal and nonspecific and, the most common alteration is type 2 myofiber atrophy. This chapter includes the clinical manifestations, diagnosis, treatment and the case examples of muscle biopsy of the most common neuromuscular junction disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jimsheleishvili S, Marwaha K, Sherman AL. Physiology, neuromuscular transmission. In: StatPearls. Treasure Island, FL: StatPearls; 2022.

    Google Scholar 

  2. Verschuuren J, Strijbos E, Vincent A. Neuromuscular junction disorders. Handb Clin Neurol. 2016;133:447–66. https://doi.org/10.1016/B978-0-444-63432-0.00024-4.

    Article  PubMed  Google Scholar 

  3. Rodríguez Cruz PM, Palace J, Beeson D. The neuromuscular junction and wide heterogeneity of congenital myasthenic syndromes. Int J Mol Sci. 2018;19(6):1677. https://doi.org/10.3390/ijms19061677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Legay C, Mei L. Moving forward with the neuromuscular junction. J Neurochem. 2017;142 Suppl 2(Suppl 2):59–63. https://doi.org/10.1111/jnc.14028.

    Article  CAS  PubMed  Google Scholar 

  5. Huang K, Luo YB, Yang H. Autoimmune channelopathies at neuromuscular junction. Front Neurol. 2019;10:516. https://doi.org/10.3389/fneur.2019.00516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liang CL, Han S. Neuromuscular junction disorders. PM R. 2013;5(5 Suppl):S81–8. https://doi.org/10.1016/j.pmrj.2013.03.016.

    Article  PubMed  Google Scholar 

  7. Punga AR, Maddison P, Heckmann JM, Guptill JT, Evoli A. Epidemiology, diagnostics, and biomarkers of autoimmune neuromuscular junction disorders. Lancet Neurol. 2022;21(2):176–88. https://doi.org/10.1016/S1474-4422(21)00297-0.

    Article  PubMed  Google Scholar 

  8. Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in myasthenia gravis. BMC Neurol. 2010;10:46. https://doi.org/10.1186/1471-2377-10-46.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fichtner ML, Jiang R, Bourke A, Nowak RJ, O'Connor KC. Autoimmune pathology in myasthenia gravis disease subtypes is governed by divergent mechanisms of immunopathology. Front Immunol. 2020;11:776. https://doi.org/10.3389/fimmu.2020.00776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huijbers MG, Marx A, Plomp JJ, Le Panse R, Phillips WD. Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurol. 2022;21(2):163–75. https://doi.org/10.1016/S1474-4422(21)00357-4.

    Article  CAS  PubMed  Google Scholar 

  11. Phillips WD, Vincent A. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms. F1000Research. 2016;5:F1000 Faculty Rev-1513. https://doi.org/10.12688/f1000research.8206.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meriggioli MN, Sanders DB. Muscle autoantibodies in myasthenia gravis: beyond diagnosis? Expert Rev Clin Immunol. 2012;8(5):427–38. https://doi.org/10.1586/eci.12.34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Ströbel P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev. 2013;12(9):875–84. https://doi.org/10.1016/j.autrev.2013.03.007.

    Article  CAS  PubMed  Google Scholar 

  14. Cron MA, Maillard S, Villegas J, Truffault F, Sudres M, Dragin N, et al. Thymus involvement in early-onset myasthenia gravis. Ann N Y Acad Sci. 2018;1412(1):137–45. https://doi.org/10.1111/nyas.13519.

    Article  CAS  PubMed  Google Scholar 

  15. Gradolatto A, Nazzal D, Truffault F, Bismuth J, Fadel E, Foti M, et al. Both Treg cells and Tconv cells are defective in the myasthenia gravis thymus: roles of IL-17 and TNF-α. J Autoimmun. 2014;52:53–63. https://doi.org/10.1016/j.jaut.2013.12.015.

    Article  CAS  PubMed  Google Scholar 

  16. Evoli A, Meacci E. An update on thymectomy in myasthenia gravis. Expert Rev Neurother. 2019;19(9):823–33. https://doi.org/10.1080/14737175.2019.1600404.

    Article  CAS  PubMed  Google Scholar 

  17. Gilhus NE, Skeie GO, Romi F, Lazaridis K, Zisimopoulou P, Tzartos S. Myasthenia gravis—autoantibody characteristics and their implications for therapy. Nat Rev Neurol. 2016;12(5):259–68. https://doi.org/10.1038/nrneurol.2016.44.

    Article  CAS  PubMed  Google Scholar 

  18. Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren J. Myasthenia gravis. Nat Rev Dis Primers. 2019;5(1):30. https://doi.org/10.1038/s41572-019-0079-y.

    Article  PubMed  Google Scholar 

  19. Zisimopoulou P, Evangelakou P, Tzartos J, Lazaridis K, Zouvelou V, Mantegazza R, et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun. 2014;52:139–45. https://doi.org/10.1016/j.jaut.2013.12.004.

    Article  CAS  PubMed  Google Scholar 

  20. Shen C, Lu Y, Zhang B, Figueiredo D, Bean J, Jung J, et al. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. J Clin Invest. 2013;123(12):5190–202. https://doi.org/10.1172/JCI66039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gilhus NE. Myasthenia and the neuromuscular junction. Curr Opin Neurol. 2012;25(5):523–9. https://doi.org/10.1097/WCO.0b013e3283572588.

    Article  CAS  PubMed  Google Scholar 

  22. Melzer N, Ruck T, Fuhr P, Gold R, Hohlfeld R, Marx A, et al. Clinical features, pathogenesis, and treatment of myasthenia gravis: a supplement to the guidelines of the German Neurological Society. J Neurol. 2016;263(8):1473–94. https://doi.org/10.1007/s00415-016-8045-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015;14(10):1023–36. https://doi.org/10.1016/S1474-4422(15)00145-3.

    Article  CAS  PubMed  Google Scholar 

  24. Wendell LC, Levine JM. Myasthenic crisis. Neurohospitalist. 2011;1(1):16–22. https://doi.org/10.1177/1941875210382918.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heldal AT, Owe JF, Gilhus NE, Romi F. Seropositive myasthenia gravis: a nationwide epidemiologic study. Neurology. 2009;73(2):150–1. https://doi.org/10.1212/WNL.0b013e3181ad53c2.

    Article  PubMed  Google Scholar 

  26. Gronseth GS, Barohn RJ. Practice parameter: thymectomy for autoimmune myasthenia gravis (an evidence-based review): report of the quality standards Subcommittee of the American Academy of Neurology. Neurology. 2000;55(1):7–15. https://doi.org/10.1212/wnl.55.1.7.

    Article  CAS  PubMed  Google Scholar 

  27. Mantegazza R, Bernasconi P, Cavalcante P. Myasthenia gravis: from autoantibodies to therapy. Curr Opin Neurol. 2018;31(5):517–25. https://doi.org/10.1097/WCO.0000000000000596.

    Article  CAS  PubMed  Google Scholar 

  28. Álvarez-Velasco R, Gutiérrez-Gutiérrez G, Trujillo JC, Martínez E, Segovia S, Arribas-Velasco M, et al. Clinical characteristics and outcomes of thymoma-associated myasthenia gravis. Eur J Neurol. 2021;28(6):2083–91. https://doi.org/10.1111/ene.14820.

    Article  PubMed  Google Scholar 

  29. Rodolico C, Bonanno C, Toscano A, Vita G. MuSK-associated myasthenia gravis: clinical features and management. Front Neurol. 2020;11:660. https://doi.org/10.3389/fneur.2020.00660.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Evoli A, Alboini PE, Damato V, Iorio R, Provenzano C, Bartoccioni E, Marino M. Myasthenia gravis with antibodies to MuSK: an update. Ann N Y Acad Sci. 2018;1412(1):82–9. https://doi.org/10.1111/nyas.13518.

    Article  CAS  PubMed  Google Scholar 

  31. Leite MI, Ströbel P, Jones M, Micklem K, Moritz R, Gold R, et al. Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol. 2005;57(3):444–8. https://doi.org/10.1002/ana.20386.

    Article  PubMed  Google Scholar 

  32. Sieb JP. Myasthenia gravis: an update for the clinician. Clin Exp Immunol. 2014;175(3):408–18. https://doi.org/10.1111/cei.12217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodríguez Cruz PM, Al-Hajjar M, Huda S, Jacobson L, Woodhall M, Jayawant S, et al. Clinical features and diagnostic usefulness of antibodies to clustered acetylcholine receptors in the diagnosis of seronegative myasthenia gravis. JAMA Neurol. 2015;72(6):642–9. https://doi.org/10.1001/jamaneurol.2015.0203.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lazaridis K, Tzartos SJ. Autoantibody specificities in myasthenia gravis; implications for improved diagnostics and therapeutics. Front Immunol. 2020;11:212. https://doi.org/10.3389/fimmu.2020.00212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamamoto D, Imai T, Tsuda E, Hozuki T, Yamauchi R, Hisahara S, et al. Effect of local cooling on excitation-contraction coupling in myasthenic muscle: another mechanism of ice-pack test in myasthenia gravis. Clin Neurophysiol. 2017;128(11):2309–17. https://doi.org/10.1016/j.clinph.2017.08.030.

    Article  PubMed  Google Scholar 

  36. Chatzistefanou KI, Kouris T, Iliakis E, Piaditis G, Tagaris G, Katsikeris N, et al. The ice pack test in the differential diagnosis of myasthenic diplopia. Ophthalmology. 2009;116(11):2236–43. https://doi.org/10.1016/j.ophtha.2009.04.039.

    Article  PubMed  Google Scholar 

  37. Pasnoor M, Dimachkie MM, Farmakidis C, Barohn RJ. Diagnosis of myasthenia gravis. Neurol Clin. 2018;36(2):261–74. https://doi.org/10.1016/j.ncl.2018.01.010.

    Article  PubMed  Google Scholar 

  38. Fortin E, Cestari DM, Weinberg DH. Ocular myasthenia gravis: an update on diagnosis and treatment. Curr Opin Ophthalmol. 2018;29(6):477–84. https://doi.org/10.1097/ICU.0000000000000526.

    Article  PubMed  Google Scholar 

  39. Vincent A, Huda S, Cao M, Cetin H, Koneczny I, Rodriguez Cruz PM, et al. Serological and experimental studies in different forms of myasthenia gravis. Ann N Y Acad Sci. 2018;1413(1):143–53. https://doi.org/10.1111/nyas.13592.

    Article  CAS  PubMed  Google Scholar 

  40. Juel VC. Clinical neurophysiology of neuromuscular junction disease. Handb Clin Neurol. 2019;161:291–303. https://doi.org/10.1016/B978-0-444-64142-7.00055-2.

    Article  PubMed  Google Scholar 

  41. Stålberg E, Sanders DB, Kouyoumdjian JA. Pitfalls and errors in measuring jitter. Clin Neurophysiol. 2017;128(11):2233–41. https://doi.org/10.1016/j.clinph.2017.09.001.

    Article  PubMed  Google Scholar 

  42. Rousseff RT. Diagnosis of myasthenia gravis. J Clin Med. 2021;10(8):1736. https://doi.org/10.3390/jcm10081736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wirtz PW, Nijnuis MG, Sotodeh M, Willems LN, Brahim JJ, Putter H, Dutch Myasthenia Study Group. The epidemiology of Myasthenia gravis, Lambert-Eaton myasthenic syndrome and their associated tumours in the northern part of the province of South Holland. J Neurol. 2003;250(6):698–701. https://doi.org/10.1007/s00415-003-1063-7.

    Article  PubMed  Google Scholar 

  44. Wirtz PW, Smallegange TM, Wintzen AR, Verschuuren JJ. Differences in clinical features between the Lambert-Eaton myasthenic syndrome with and without cancer: an analysis of 227 published cases. Clin Neurol Neurosurg. 2002;104(4):359–63. https://doi.org/10.1016/s0303-8467(02)00054-9.

    Article  PubMed  Google Scholar 

  45. Meriney SD, Tarr TB, Ojala KS, Wu M, Li Y, Lacomis D, et al. Lambert-Eaton myasthenic syndrome: mouse passive-transfer model illuminates disease pathology and facilitates testing therapeutic leads. Ann N Y Acad Sci. 2018;1412(1):73–81. https://doi.org/10.1111/nyas.13512.

    Article  CAS  PubMed  Google Scholar 

  46. Guidon AC. Lambert-Eaton Myasthenic syndrome, botulism, and immune checkpoint inhibitor-related Myasthenia gravis. Continuum. 2019;25(6):1785–806. https://doi.org/10.1212/CON.0000000000000807.

    Article  PubMed  Google Scholar 

  47. Kesner VG, Oh SJ, Dimachkie MM, Barohn RJ. Lambert-Eaton Myasthenic syndrome. Neurol Clin. 2018;36(2):379–94. https://doi.org/10.1016/j.ncl.2018.01.008.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Titulaer MJ, Wirtz PW, Kuks JB, Schelhaas HJ, van der Kooi AJ, Faber CG, et al. The Lambert-Eaton myasthenic syndrome 1988-2008: a clinical picture in 97 patients. J Neuroimmunol. 2008;201-202:153–8. https://doi.org/10.1016/j.jneuroim.2008.05.025.

    Article  CAS  PubMed  Google Scholar 

  49. Burns TM, Russell JA, LaChance DH, Jones HR. Oculobulbar involvement is typical with Lambert-Eaton myasthenic syndrome. Ann Neurol. 2003;53(2):270–3. https://doi.org/10.1002/ana.10477.

    Article  PubMed  Google Scholar 

  50. Motomura M, Lang B, Johnston I, Palace J, Vincent A, Newsom-Davis J. Incidence of serum anti-P/O-type and anti-N-type calcium channel autoantibodies in the Lambert-Eaton myasthenic syndrome. J Neurol Sci. 1997;147(1):35–42. https://doi.org/10.1016/s0022-510x(96)05303-8.

    Article  CAS  PubMed  Google Scholar 

  51. Ivanovski T, Miralles F. Lambert-Eaton Myasthenic syndrome: early diagnosis is key. Degener Neurol Neuromuscul Dis. 2019;9:27–37. https://doi.org/10.2147/DNND.S192588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alhaidar MK, Abumurad S, Soliven B, Rezania K. Current treatment of myasthenia gravis. J Clin Med. 2022;11(6):1597. https://doi.org/10.3390/jcm11061597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sanders DB, Wolfe GI, Benatar M, Evoli A, Gilhus NE, Illa I, Kuntz N, et al. International consensus guidance for management of myasthenia gravis: executive summary. Neurology. 2016;87(4):419–25. https://doi.org/10.1212/WNL.0000000000002790.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Monsul NT, Patwa HS, Knorr AM, Lesser RL, Goldstein JM. The effect of prednisone on the progression from ocular to generalized myasthenia gravis. J Neurol Sci. 2004;217(2):131–3. https://doi.org/10.1016/j.jns.2003.08.017.

    Article  CAS  PubMed  Google Scholar 

  55. Farmakidis C, Pasnoor M, Dimachkie MM, Barohn RJ. Treatment of myasthenia gravis. Neurol Clin. 2018;36(2):311–37. https://doi.org/10.1016/j.ncl.2018.01.011.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kuks JB, Djojoatmodjo S, Oosterhuis HJ. Azathioprine in myasthenia gravis: observations in 41 patients and a review of literature. Neuromuscul Disord. 1991;1(6):423–31. https://doi.org/10.1016/0960-8966(91)90005-d.

    Article  CAS  PubMed  Google Scholar 

  57. Narayanaswami P, Sanders DB, Wolfe G, Benatar M, Cea G, Evoli A, et al. International consensus guidance for management of Myasthenia gravis: 2020 update. Neurology. 2021;96(3):114–22. https://doi.org/10.1212/WNL.0000000000011124.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Howard JF Jr, Bril V, Vu T, Karam C, Peric S, Margania T, Murai H, ADAPT Investigator Study Group. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2021;20(7):526–36. https://doi.org/10.1016/S1474-4422(21)00159-9.

    Article  CAS  PubMed  Google Scholar 

  59. Morren J, Li Y. Maintenance immunosuppression in myasthenia gravis, an update. J Neurol Sci. 2020;410:116648. https://doi.org/10.1016/j.jns.2019.116648.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang N, Hong D, Ouyang T, Meng W, Huang J, Li M, Hong T. 3,4-diaminopyridine treatment for Lambert-Eaton myasthenic syndrome in adults: a meta-analysis of randomized controlled trials. BMC Neurol. 2021;21(1):371. https://doi.org/10.1186/s12883-021-02405-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vanhaesebrouck AE, Beeson D. The congenital myasthenic syndromes: expanding genetic and phenotypic spectrums and refining treatment strategies. Curr Opin Neurol. 2019;32(5):696–703. https://doi.org/10.1097/WCO.0000000000000736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Engel AG. Genetic basis and phenotypic features of congenital myasthenic syndromes. Handb Clin Neurol. 2018;148:565–89. https://doi.org/10.1016/B978-0-444-64076-5.00037-5.

    Article  PubMed  Google Scholar 

  63. Shen XM, Crawford TO, Brengman J, Acsadi G, Iannaconne S, Karaca E, et al. Functional consequences and structural interpretation of mutations of human choline acetyltransferase. Hum Mutat. 2011;32(11):1259–67. https://doi.org/10.1002/humu.21560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ohno K, Tsujino A, Brengman JM, Harper CM, Bajzer Z, Udd B, et al. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci U S A. 2001;98(4):2017–22. https://doi.org/10.1073/pnas.98.4.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Farmakidis C, Pasnoor M, Barohn RJ, Dimachkie MM. Congenital myasthenic syndromes: a clinical and treatment approach. Curr Treat Options Neurol. 2018;20(9):36. https://doi.org/10.1007/s11940-018-0520-7.

    Article  PubMed  Google Scholar 

  66. Ohno K, Brengman J, Tsujino A, Engel AG. Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proc Natl Acad Sci U S A. 1998;95(16):9654–9. https://doi.org/10.1073/pnas.95.16.9654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mihaylova V, Müller JS, Vilchez JJ, Salih MA, Kabiraj MM, D'Amico A, et al. Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain. 2008;131(Pt 3):747–59. https://doi.org/10.1093/brain/awm325.

    Article  PubMed  Google Scholar 

  68. McMacken G, Abicht A, Evangelista T, Spendiff S, Lochmüller H. The increasing genetic and phenotypical diversity of congenital Myasthenic syndromes. Neuropediatrics. 2017;48(4):294–308. https://doi.org/10.1055/s-0037-1602832.

    Article  CAS  PubMed  Google Scholar 

  69. Müller JS, Herczegfalvi A, Vilchez JJ, Colomer J, Bachinski LL, Mihaylova V, et al. Phenotypical spectrum of DOK7 mutations in congenital myasthenic syndromes. Brain. 2007;130(Pt 6):1497–506. https://doi.org/10.1093/brain/awm068.

    Article  PubMed  Google Scholar 

  70. Liewluck T, Selcen D, Engel AG. Beneficial effects of albuterol in congenital endplate acetylcholinesterase deficiency and Dok-7 myasthenia. Muscle Nerve. 2011;44(5):789–94. https://doi.org/10.1002/mus.22176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jeffery IA, Karim S. Botulism. In: StatPearls. Treasure Island, FL: StatPearls; 2022.

    Google Scholar 

  72. Sobel J. Botulism. Clin Infect Dis. 2005;41(8):1167–73. https://doi.org/10.1086/444507.

    Article  CAS  PubMed  Google Scholar 

  73. Rao AK, Sobel J, Chatham-Stephens K, Luquez C. Clinical guidelines for diagnosis and treatment of Botulism, 2021. MMWR Recomm Rep. 2021;70(2):1–30. https://doi.org/10.15585/mmwr.rr7002a1.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dubowitz V, Sewry C, Oldfors A. Muscle biopsy: a practical approach. Philadelphia: Saunders Elsevier; 2013. p. 1–27.

    Google Scholar 

  75. Carpenter S, Karpati G. Pathology of skeletal muscle. Oxford: Oxford University Press; 2001.

    Google Scholar 

  76. Diniz G, Tosun Yildirim H, Ünalp A, Barutçuoğlu M, Güzel O, Polat M, Türe S, Özgönül F, Serdaroğlu G. The evaluation of muscle biopsy findings in children with neuromuscular disorders. J Behcet Uz Child Hosp. 2012;2(2):62–7. https://doi.org/10.5222/buchd.2012.062.

    Article  Google Scholar 

  77. Diniz G. The importance of muscle and nerve biopsies in the diagnosis of neuromuscular diseases. Forbes J Med. 2020;1(2):23–9. https://doi.org/10.5222/forbes.2020.18291.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan Sukru Sengun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sengun, I.S., Ozcelik, P., Diniz, G. (2023). Disorders of the Neuromuscular Junction. In: Diniz, G. (eds) Clues for Differential Diagnosis of Neuromuscular Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-33924-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33924-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33923-3

  • Online ISBN: 978-3-031-33924-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics