Skip to main content

Numerical Simulation of In-Flight Icing by a Multi-step Level-Set Method

  • Reference work entry
  • First Online:
Handbook of Numerical Simulation of In-Flight Icing

Abstract

Simulation of long-term in-flight ice accretion requires accounting for the feedback of the growing ice on the aerodynamics and particles’ impingement. This interaction is achieved by loosely coupling the flow and particles’ solvers to the ice accretion code in the simulation procedure. A quasi-steady approximation is made leveraging the different time scales at play: the total exposure time is subdivided into many smaller instants, after which the aerodynamics and collection efficiency are recomputed.

This simulation approach allows better predictions of long-term ice accretion than the single-shot or the predictor-corrector approaches, at the expense of longer simulation times and some challenging technical difficulties. The multi-step approach’s main challenge is tracking the evolving air-ice interface and generating a volume-conforming grid to perform the required computation.

This chapter reviews different approaches to model evolving boundary problems and highlights their main limitations when applied to in-flight icing simulations. Then, we present an innovative level-set-based approach to model the complex morphology of the accreting ice. Local conservation of the prescribed iced mass is enforced by accounting for the body’s curvature. Multi-step in-flight ice accretion simulations in rime and glace ice conditions over a NACA0012 wing are finally presented, proving the method’s robustness and adaptability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abgrall R, Beaugendre H, Dobrzynski C (2014) An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques. J Comput Phys 257:83–101

    Article  MathSciNet  MATH  Google Scholar 

  • Arya S et al (1998) An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J ACM 45:891–923

    Article  MathSciNet  MATH  Google Scholar 

  • Batina JT (1990) Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA J 28:1381–1388

    Article  Google Scholar 

  • Beaugendre H, Habashi W, Morency F (2003) FENSAP-ICE’s three-dimensional in-flight ice accretion module: ICE3D. J Aircr 40:239–247

    Article  Google Scholar 

  • Bellosta T a. P. G. a. G. A. (2019) A robust 3D particle tracking solver for in-flight ice accretion using arbitrary precision arithmetic. In: 8th International Conference on Computational Methods for Coupled Problems in Science and Engineering, Sitges

    Google Scholar 

  • Bellosta T, Parma G, Guardone A (2019) A robust 3D particle tracking solver for in-flight ice accretion using arbitrary precision arithmetic. In: 8th International Conference on Computational Methods for Coupled Problems in Science and Engineering, Sitges

    Google Scholar 

  • Bidwell C (2014) Icing analysis of a swept NACA 0012 wing using LEWICE3D version 3.48. In: 6th AIAA atmospheric and space environments conference

    Google Scholar 

  • Bourgault-Coté S, Docampo-Sanchez J, Laurendeau E (2018) Multi-layer ice accretion simulations using a level-set method with B-spline representation. In: 2018 AIAA aerospace sciences meeting, Kissimmee

    Google Scholar 

  • Broeren A (2021) 1st Ice Prediction Workshop. [Online] Available at: https://icepredictionworkshop.wordpress.com/. Accessed 30 June 2022

  • Capizzano F, Iuliano E (2013) Recent advances on immersed boundary methods at the Italian Aerospace Research Center. Leiden, Joint EUROMECH/ERCOFTAC Colloquium, p 549

    Google Scholar 

  • Dapogny C, Dobrzynski C, Frey P (2014) Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J Comput Phys 262:358–378

    Article  MathSciNet  MATH  Google Scholar 

  • De Boer A, Van der Schoot MS, Bijl H (2007) Mesh deformation based on radial basis function interpolation. Comput Struct 85:784–795

    Article  Google Scholar 

  • Dobrzynski C (2012) MMG3D: user guide, s.l.: Technical Report RT-0422, INRIA

    Google Scholar 

  • Donizetti A, Re B, Guardone A (2021) A level-set based mesh adaptation technique for mass conservative ice accretion in unsteady simulations. In: 9th International Conference on Computational Methods for Coupled Problems in Science and Engineering, Cagliari

    Google Scholar 

  • Donizetti A et al (2022) A three-dimensional front tracking technique for multi-step simulations with dynamic boundaries [Conference Presentation]. In: 8th European Seminar on Computing, Pilsen.

    Google Scholar 

  • Donizetti A et al (2023) Level-set mass-conservative front-tracking technique for multistep simulations of in-flight ice accretion. J Aircr:1–11

    Google Scholar 

  • Economon TD et al (2015) SU2: an open-source suite for multiphysics simulation and design. AIAA J 54(3):828–846

    Article  Google Scholar 

  • Emmanuel R (2016) Validation of a 3D ice accretion tool on swept wings of the SUNSET2 program.In: 8th AIAA atmospheric and space environments conference, Washington, DC

    Google Scholar 

  • Fossati M, Khurram R, Habashi W (2012) An ALE mesh movement scheme for long-term in-flight ice accretion. Int J Numer Methods Fluids 68:958–976

    Article  MathSciNet  MATH  Google Scholar 

  • Gent RW, Dart NP, Cansdale JT (2000) Aircraft icing. Philos Trans R Soc A Math Phys Eng Sci 358:2873–2911

    Article  MATH  Google Scholar 

  • Gori G et al (2015) PoliMIce: a simulation framework for three-dimensional ice accretion. Appl Math Comput 267:96–107

    Article  MathSciNet  MATH  Google Scholar 

  • Gori G, Parma G, Zocca M, Guardone A (2018) Local solution to the unsteady Stefan problem for in-flight ice Accretion. J Aircr 55(1):251–262

    Article  Google Scholar 

  • Lavoie P et al (2022) Immersed boundary methodology for multistep ice accretion using a level set. J Aircr:1–15

    Google Scholar 

  • Lee D, Schachter B (1980) Two algorithms for constructing a Delaunay triangulation. Int J Parallel Prog 9:219–242

    MathSciNet  MATH  Google Scholar 

  • Lee S et al (2014) Implementation and validation of 3-D ice accretion measurement methodology. In: 6th AIAA atmospheric and space environments conference, Atlanta

    Google Scholar 

  • Masud A, Bhanabhagvanwala M, Khurram RA (2007) An adaptive mesh rezoning scheme for moving boundary flows and fluid-structure interaction. Comput Fluids 36:77–91

    Article  MathSciNet  MATH  Google Scholar 

  • Messinger B (1953) Equilibrium temperature of an unheated icing surface as a function of air speed. J Aeronaut Sci 20:29–42

    Article  Google Scholar 

  • Mingione G, Brandi V (1998) Ice accretion prediction on multielement airfoils. J Aircr 35:240–246

    Article  Google Scholar 

  • Morelli M, Bellosta T, Guardone A (2021) Efficient radial basis function mesh deformation methods for aircraft icing. J Comput Appl Math 392:113492

    Article  MathSciNet  MATH  Google Scholar 

  • Myers T (2021) Extension to the Messinger model for aircraft icing. AIAA J 39:211–218

    Article  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Pena D, Hoarau Y, Laurendeau E (2016) A single step ice accretion model using Level-Set method. J Fluids Struct 65:278–294

    Article  Google Scholar 

  • Pendenza A, Habashi WG, Fossati M (2015) A 3D mesh deformation technique for irregular in-flight ice accretion. Int J Numer Methods Fluids 79:215–242

    Article  MathSciNet  Google Scholar 

  • Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10:252–271

    Article  MathSciNet  MATH  Google Scholar 

  • Rausa A, Morelli M, Guardone A (2021) A novel method for robust and efficient prediction of ice shedding from rotorcraft blades. J Comput Appl Math 391:113452

    Article  MathSciNet  MATH  Google Scholar 

  • Re B, Guardone A, Dobrzynski C (2017) An interpolation-free ALE scheme for unsteady inviscid flows computations with large boundary displacements over three-dimensional adaptive grids. J Comput Phys 340:26–54

    Article  MathSciNet  MATH  Google Scholar 

  • Rendall TC, Allen CB (2009) Efficient mesh motion using radial basis functions with data reduction algorithms. J Comput Phys 228:6231–6249

    Article  MATH  Google Scholar 

  • Saeed F, Gouttebroze S, Paraschivoiu I (2001) Modified canice for improved prediction of airfoil ice accretion. In: 8th Aerodynamic Symposium of 48th CASI Conference, Toronto

    Google Scholar 

  • Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. AIAA, Reno

    Book  Google Scholar 

  • Stefan J (1891) Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Annalen der Physik 278(2):269–286

    Article  MATH  Google Scholar 

  • Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114:146–159

    Article  MATH  Google Scholar 

  • Szilder K (1994) Simulation of ice accretion on a cylinder due to freezing rain. J Glaciol:586–594

    Google Scholar 

  • Szilder K, Lozowski EP (2018) Comparing experimental ice accretions on a swept wing with 3d morphogenetic simulations. J Aircr 55:2545–2548

    Article  Google Scholar 

  • Szilder K, McIlwain S, Lozowski EP (2006) Numerical simulation of complex ice shapes on swept wings. In: 25th Congress of the International Council of the Aeronautical Sciences, Hamburg

    Google Scholar 

  • Wright WB (2002) User manual for the NASA Glenn Ice Accretion Code LEWICE, s.l.: s.n.

    Google Scholar 

  • Yang Z, Mavriplis D (2005) Unstructured dynamic meshes with higher-order time integration schemes for the unsteady Navier-Stokes equations. In: 43rd AIAA aerospace sciences meeting and exhibit, Reno

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Donizetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Donizetti, A., Bellosta, T., Rausa, A., Re, B., Guardone, A. (2024). Numerical Simulation of In-Flight Icing by a Multi-step Level-Set Method. In: Habashi, W.G. (eds) Handbook of Numerical Simulation of In-Flight Icing. Springer, Cham. https://doi.org/10.1007/978-3-031-33845-8_30

Download citation

Publish with us

Policies and ethics