Skip to main content

Machine Learning Technique for Data Fusion and Cognitive Load Classification Using an Eye Tracker

  • Conference paper
  • First Online:
Proceedings of the 2023 International Conference on Advances in Computing Research (ACR’23) (ACR 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 700))

Included in the following conference series:

  • 440 Accesses

Abstract

Advanced Driver Assistance Systems (ADAS) and other human-machine automation systems should be able to accurately recognize and adapt to the cognitive load of the user. For effective human-machine automation, it is important to develop techniques to automatically predict the cognitive load, based on data from non-invasive and low-cost sensors, such as eye-trackers. In this paper, we investigate the use of machine learning (ML) to classify the cognitive load of a participant performing n-back tasks. The ML models are trained using a large number of raw eye-tracking metrics. Our results demonstrate that tree-based algorithms are able to quickly predict cognitive load with a high degree of accuracy compared to other methods, indicating their potential usefulness for real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karpov, A., Yusupov, R.: Multimodal interfaces of human-computer interaction. Her. Russ. Acad. Sci. 88(1), 67–74 (2018)

    Article  Google Scholar 

  2. Valdés, R.A., Comendador, V.F.G., Sanz, A.R., Castán, J.P.: Aviation 4.0: more safety through automation and digitization. In: Aircraft Technology. IntechOpen (2018)

    Google Scholar 

  3. Ashima, R., Haleem, A., Bahl, S., Javaid, M., Mahla, S.K., Singh, S.: Automation and manufacturing of smart materials in additive manufacturing technologies using internet of things towards the adoption of industry 4.0. Mater. Today Proc. 45, 5081–5088 (2021)

    Article  Google Scholar 

  4. Pazouki, K., Forbes, N., Norman, R.A., Woodward, M.D.: Investigation on the impact of human-automation interaction in maritime operations. Ocean Eng. 153, 297–304 (2018)

    Article  Google Scholar 

  5. Rogers, W.P., et al.: Automation in the mining industry: review of technology, systems, human factors, and political risk. Min. Metal. Explor. 36(4), 607–631 (2019)

    Google Scholar 

  6. Yi, D., et al.: Implicit personalization in driving assistance: state-of-the-art and open issues. IEEE Trans. Intell. Veh. 5(3), 397–413 (2019)

    Article  Google Scholar 

  7. Ríos Insua, D., Caballero, W.N., Naveiro, R.: Managing driving modes in automated driving systems. Transp. Sci. 56(5), 1259–1278 (2022)

    Article  MATH  Google Scholar 

  8. Young, K., Regan, M., Hammer, M.: Driver distraction: a review of the literature. Distracted Driving 2007, 379–405 (2007)

    Google Scholar 

  9. Koesdwiady, A., Soua, R., Karray, F., Kamel, M.S.: Recent trends in driver safety monitoring systems: state of the art and challenges. IEEE Trans. Veh. Technol. 66(6), 4550–4563 (2016)

    Article  Google Scholar 

  10. He, D., Donmez, B., Liu, C.C., Plataniotis, K.N.: High cognitive load assessment in drivers through wireless electroencephalography and the validation of a modified n-back task. IEEE Trans. Hum.-Mach. Syst. 49(4), 362–371 (2019)

    Article  Google Scholar 

  11. Naujoks, F., Kiesel, A., Neukum, A.: Cooperative warning systems: the impact of false and unnecessary alarms on drivers’ compliance. Accid. Anal. Prev. 97, 162–175 (2016)

    Article  Google Scholar 

  12. Holzmann, F.: Adaptive cooperation between driver and assistant system. In: Holzmann, F. (ed.) Adaptive Cooperation Between Driver and Assistant System, pp. 11–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-74474-0_2

    Chapter  Google Scholar 

  13. Chen, S., Epps, J.: Efficient and robust pupil size and blink estimation from near-field video sequences for human-machine interaction. IEEE Trans. Cybern. 44(12), 2356–2367 (2014)

    Article  Google Scholar 

  14. Ren, P., et al.: Comparison of the use of blink rate and blink rate variability for mental state recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 27(5), 867–875 (2019)

    Article  Google Scholar 

  15. Duchowski, A.T., Krejtz, K., Żurawska, J., House, D.H.: Using microsaccades to estimate task difficulty during visual search of layered surfaces. IEEE Trans. Visual Comput. Graphics 26(9), 2904–2918 (2019)

    Article  Google Scholar 

  16. Waltl, B., Bonczek, G., Matthes, F.: Rule-based information extraction: advantages, limitations, and perspectives. Jusletter IT (2018)

    Google Scholar 

  17. Mohammed, M., Khan, M., Bashier, E.: Machine Learning: Algorithms and Applications (2016). https://doi.org/10.1201/9781315371658

  18. Kotsiantis, S., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Front. Artif. Intell. Appl. 160, 3 (2007)

    Google Scholar 

  19. Weissler, E.H., Naumann, T., Andersson, T. et al.: The role of machine learning in clinical research: transforming the future of evidence generation. Trials 22, 537 (2021). https://doi.org/10.1186/s13063-021-05489-x

  20. Soni, N., Sharma, E.K., Singh, N., Kapoor, A.: Artificial intelligence in business: from research and innovation to market deployment. Procedia Comput. Sci. 167, 2200–2210 (2020). https://doi.org/10.1016/j.procs.2020.03.272

    Article  Google Scholar 

  21. So, S., Sharma, P., Petit, J.: Integrating Plausibility Checks and Machine Learning for Misbehavior Detection in VANET, pp. 564–571 (2018). https://doi.org/10.1109/ICMLA.2018.00091

  22. Gyawali, S., Qian, Y.: Misbehavior detection using machine learning in vehicular communication networks. In: ICC 2019-2019 IEEE International Conference on Communications (ICC), pp. 1–6 (2019). https://doi.org/10.1109/ICC.2019.8761300

  23. Ahmad, M.I., Keller, I., Robb, D.A., Lohan, K.S.: A framework to estimate cognitive load using physiological data. Pers. Ubiquitous Comput. (2020)

    Google Scholar 

  24. Ahmed, M.U., Begum, S., Gestlöf, R., Rahman,, H. Sörman, J.: Machine learning for cognitive load classification - a case study on contact-free approach. In: IFIP Advances in Information and Communication Technology, pp. 31–42 (2020)

    Google Scholar 

  25. Young, R.A., Hsieh, L., Seaman, S.: The tactile detection response task: preliminary validation for measuring the attentional effects of cognitive load. In: Proceedings of the International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, pp. 71–77 (2013)

    Google Scholar 

  26. Delayed digit recall (N-back) task website. https://agelab.mit.edu/delayed-digit-recall-n-back-task

  27. Latin Square Designs, pp. 297–297 (2008)

    Google Scholar 

  28. Pillai, P., Ayare, P., Balasingam, B., Milne, K., Biondi, F.: Response time and eye tracking datasets for activities demanding varying cognitive load. Data Brief 33, 106389 (2020)

    Article  Google Scholar 

  29. Gazepoint: Open Gaze API by Gazepoint, usabilityin.ru (2017). https://usabilityin.ru/wp-content/uploads/2017/12/Gazepoint-API.pdf. Accessed 23 May 2022

  30. Hennessey, C.: Gazepoint analysis v3.0.0 blink tracking. Gazepoint (2019). https://www.gazept.com/blog/analysis/gazepoint-analysis-v3-0-0-blink-tracking/. Accessed 22 May 2022

  31. Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project (2013). https://doi.org/10.48550/ARXIV.1309.0238

  32. He, H., Ma, Y.: Imbalanced Learning Foundations, Algorithms, and Applications. IEEE Press, Wiley, Hoboken (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunita Jaekel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Collins, A., Pillai, P., Balasingam, B., Jaekel, A. (2023). Machine Learning Technique for Data Fusion and Cognitive Load Classification Using an Eye Tracker. In: Daimi, K., Al Sadoon, A. (eds) Proceedings of the 2023 International Conference on Advances in Computing Research (ACR’23). ACR 2023. Lecture Notes in Networks and Systems, vol 700. Springer, Cham. https://doi.org/10.1007/978-3-031-33743-7_7

Download citation

Publish with us

Policies and ethics