Skip to main content

Fundamental Neurocardiology: The Intracardiac Nervous System

  • Chapter
  • First Online:
Heart Rate and Rhythm
  • 294 Accesses

Abstract

Cardiac output is controlled by the autonomic nervous system to meet continually changing demands for the perfusion of systemic vascular beds. Dysfunction of autonomic control can contribute to a range of cardiopathies; conversely, robust autonomic function can help maintain a failing myocardium as heart diseases progress. Understanding the structure and operation of the intracardiac nervous system is thus essential to guide the formation of novel neuronally-directed cardiac therapies. Neural control of the heart operates through a hierarchy of interconnected reflex loops at the levels of the intracardiac neural network, the extracardiac intrathoracic ganglia and medullary and spinal autonomic nuclei. Within this hierarchy, the intracardiac nervous system represents the final common pathway for local cardiac control, capable of modulating chronotropy, dromotropy and inotropy on a fast, beat-by-beat basis. Intracardiac neurons constitute a series of interconnected ganglionated plexi distributed throughout the atrial walls and around the atrioventricular border; plexus nerves innervate all regions of the heart. This chapter reviews the position of the intracardiac nervous system in the autonomic control hierarchy and summarizes current knowledge of the neuroanatomy, physiology and potential roles of neuronal populations in cardiac control. Opportunities for future research to address remaining gaps in knowledge of this system are discussed in terms of the application of new tissue imaging technologies, genetic manipulations and novel experimental models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaskell W. The involuntary nervous system. London, UK: Longmans; 1916.

    Google Scholar 

  2. Langley G. The autonomic nervous system. Cambridge: Cambridge University Press; 1921.

    Google Scholar 

  3. Cannon W, Rosenblueth A. Autonomic effector systems. New York: The MacMillan Company; 1937.

    Google Scholar 

  4. Sheehan D. Discovery of the autonomic nervous system. Arch Neurol Psychiatry. 1936;35:1081–115.

    Article  Google Scholar 

  5. Randall WC. Changing perspectives concerning neural control of the heart. In: Armour JA, Ardell JL, editors. Neurocardiology. New York: Oxford University Press; 1994. p. 3–17.

    Google Scholar 

  6. Armour JA, Ardell JL, editors. Neurocardiology. New York: Oxford University Press; 1994.

    Google Scholar 

  7. Armour JA, Ardell JL, editors. Basic and clinical neurocardiology. New York: Oxford University Press; 2004.

    Google Scholar 

  8. Armour JA. Potential clinical relevance of the “little brain” the mammalian heart. Exp Physiol. 2008;93(2):165–76.

    Article  CAS  PubMed  Google Scholar 

  9. Shivkumar K, Ardell JL. Cardiac autonomic control in health and disease. J Physiol. 2016;594(14):3851–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coote JH, Gilbey MP. Special issue, ‘Central and peripheral nerve influence on cardiac function in health and disease’. Auton Neurosci Basic Clin. 2016;199:1–2.

    Article  CAS  Google Scholar 

  11. Osteraas ND, Lee VH. Neurocardiology. In: Wijdicks EFM, Kramer AH, editors. Handbook of Clinical Neurology vol 140 (3rd series): Critical care neurology, Part 1. Edinburgh: Elsevier; 2017. p. 49–65.

    Google Scholar 

  12. Durães Campos I, Pinto V, Sousa N, Pereira VH. A brain within the heart: A review on the intracardiac nervous system. J Mol Cell Cardiol. 2018;119:1–9.

    Article  PubMed  Google Scholar 

  13. Wake E, Brack K. Characterization of the intrinsic cardiac nervous system. Auton Neurosci. 2016;199:3–16.

    Article  PubMed  Google Scholar 

  14. Loewy A, Spyer K, editors. Central regulation of autonomic functions. New York: Oxford University Press; 1990.

    Google Scholar 

  15. Taggart P, Critchley H, van Duijvendoden S, Lambiase PD. Significance of neuro-cardiac control mechanisms governed by higher regions of the brain. Auton Neurosci. 2016;199:54–65.

    Article  PubMed  Google Scholar 

  16. Hopkins DA, Armour JA. Ganglionic distribution of afferent neurons innervating the canine heart and cardiopulmonary nerves. J Auton Nerv Syst. 1989;26(3):213–22.

    Article  CAS  PubMed  Google Scholar 

  17. Armour JA, Huang MH, Pelleg A, Sylvén C. Responsiveness of in situ canine nodose ganglion afferent neurones to epicardial mechanical or chemical stimuli. Cardiovasc Res. 1994;28(8):1218–25.

    Article  CAS  PubMed  Google Scholar 

  18. Vance WH, Bowker RC. Spinal origins of cardiac afferents from the region of the left anterior descending artery. Brain Res. 1983;258(1):96–100.

    Article  CAS  PubMed  Google Scholar 

  19. Armour JA. Anatomy and function of the intrathoracic neurons regulating the mammalian heart. In: Zucker I, Gilmore J, editors. Reflex control of the circulation. Boca Raton, FL: CRC Press; 1991. p. 1–37.

    Google Scholar 

  20. Kember G, Ardell JL, Shivkumar K, Armour JA. Recurrent myocardial infarction: mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control. PLoS One. 2017;12(7):e0180194.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Norris JE, Foreman RD, Wurster RK. Responses of the canine heart to stimulation of the first five ventral thoracic roots. Am J Physiol. 1974;227(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  22. Mizeres NJ. The anatomy of the autonomic nervous system in the dog. Am J Anat. 1955;96(2):285–318.

    Article  CAS  PubMed  Google Scholar 

  23. Hopkins DA, Armour JA. Localization of sympathetic postganglionic and parasympathetic preganglionic neurons which innervate different regions of the dog heart. J Comp Neurol. 1984;229(2):186–98.

    Article  CAS  PubMed  Google Scholar 

  24. Levy MN. Sympathetic-parasympathetic interactions in the heart. Circ Res. 1971;29(5):437–45.

    Article  CAS  PubMed  Google Scholar 

  25. Armour JA. Anatomy and function of thoracic cardiac neurons. In: Ciriello J, Calaresu F, Renaud L, Polosa C, editors. Organization of the autonomic nervous system: central and peripheral mechanisms. New York: Alan R Liss; 1987. p. 67–77.

    Google Scholar 

  26. Gagliardi M, Randall WC, Bieger D, Wurster RD, Hopkins DA, Armour JA. Activity of in vivo canine cardiac plexus neurons. Am J Physiol. 1988;255(4):H789–800.

    CAS  PubMed  Google Scholar 

  27. Armour JA. Activity of in situ stellate ganglion neurons of dogs recorded extracellularly. Can J Physiol Pharmacol. 1986;64(2):101–11.

    Article  CAS  PubMed  Google Scholar 

  28. Armour JA. Neuronal activity recorded extracellularly in chronically decentralized in situ canine middle cervical ganglia. Can J Physiol Pharmacol. 1986;64(7):1038–46.

    Article  CAS  PubMed  Google Scholar 

  29. Bosnjak ZJ, Kampine JP. Intracellular recordings from the stellate ganglion of the cat. J Physiol. 1982;324:273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. J Comp Neurol. 1980;193(2):435–65.

    Article  CAS  PubMed  Google Scholar 

  31. Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol. 1980;193(2):467–508.

    Article  CAS  PubMed  Google Scholar 

  32. Ardell JL, Armour JA. Neurocardiology: structure-based function. Compr Physiol. 2016;6(4):1635–53.

    Article  PubMed  Google Scholar 

  33. Shivkumar K, Ajijola OA, Anand I, Armour JA, Chen P-S, Esler M, et al. Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J Physiol. 2016;594(14):3911–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hanna P, Rajendran PS, Ajijola OA, Vaseghi M, Andrew Armour J, Ardell JL, et al. Cardiac neuroanatomy—imaging nerves to define functional control. Auton Neurosci. 2017;207:48–58.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rajendran PS, Nakamura K, Ajijola OA, Vaseghi M, Armour JA, Ardell JL, et al. Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system. J Physiol. 2016;594(2):321–41.

    Article  CAS  PubMed  Google Scholar 

  36. Jänig W. The integrative action of the autonomic nervous system: neurobiology of homeostasis. Cambridge: Cambridge University Press; 2006.

    Book  Google Scholar 

  37. Jänig W, McLachlan EM. Specialized functional pathways are the building blocks of the autonomic nervous system. J Auton Nerv Syst. 1992;41(1–2):3–13.

    Article  PubMed  Google Scholar 

  38. Jänig W, McLachlan EM. Neurobiology of the autonomic nervous system. In: Mathias C, Bannister R, editors. Autonomic failure: a textbook of clinical disorders of the autonomic nervous system. 5th ed. Oxford: Oxford University Press; 2013. p. 21–34.

    Google Scholar 

  39. Jänig W, McLachlan EM. Characteristics of function-specific pathways in the sympathetic nervous system. Trends Neurosci. 1992;15(12):475–81.

    Article  PubMed  Google Scholar 

  40. Jänig W. Neurocardiology: a neurobiologist’s perspective. J Physiol. 2016;594:3955–62.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Farrell A, Smith F. Cardiac form, function and physiology. In: Gamperl A, Gillis T, Farrell A, Brauner C, editors. The cardiovascular system: morphology, control and function. Cambridge, MA: Academic; 2017. p. 155–264.

    Chapter  Google Scholar 

  42. Nilsson S. Autonomic nerve function in the vertebrates. Berlin: Springer; 1983.

    Book  Google Scholar 

  43. Nilsson S. Comparative anatomy of the autonomic nervous system. Auton Neurosci. 2011;165:3–9.

    Article  PubMed  Google Scholar 

  44. Nilsson S, Holmgren S, editors. Comparative physiology and evolution of the autonomic nervous system. Chur, Switzerland: Harwood Academic Publishers; 1994.

    Google Scholar 

  45. Nonidez J. Studies on the innervation of the heart: 1. Distribution of the cardiac nerves, with special reference to the identification of the sympathetic and parasympathetic postganglionics. Am J Anat. 1939;65(3):361–413.

    Article  Google Scholar 

  46. King TS, Coakley JB. The intrinsic nerve cells of the cardiac atria of mammals and man. J Anat. 1958;92(3):353–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rysevaite K, Saburkina I, Pauziene N, Noujaim SF, Jalife J, Pauza DH. Morphologic pattern of the intrinsic ganglionated nerve plexus in mouse heart. Heart Rhythm. 2011;8(3):448–54.

    Article  PubMed  Google Scholar 

  48. Pauza DH, Saburkina I, Rysevaite K, Inokaitis H, Jokubauskas M, Jalife J, et al. Neuroanatomy of the murine cardiac conduction system: a combined stereomicroscopic and fluorescence immunohistochemical study. Auton Neurosci. 2013;176(1–2):32–47.

    Article  CAS  PubMed  Google Scholar 

  49. Pardini BJ, Patel KP, Schmid PG, Lund DD. Location, distribution and projections of intracardiac ganglion cells in the rat. J Auton Nerv Syst. 1987;20(2):91–101.

    Article  CAS  PubMed  Google Scholar 

  50. Richardson RJ, Grkovic I, Anderson CR. Immunohistochemical analysis of intracardiac ganglia of the rat heart. Cell Tissue Res. 2003;314(3):337–50.

    Article  CAS  PubMed  Google Scholar 

  51. Achanta S, Gorky J, Leung C, Moss A, Robbins S, Eisenman L, et al. A comprehensive integrated anatomical and molecular atlas of rat intrinsic cardiac nervous system. iScience. 2020;23(6):101140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Steele PA, Gibbins IL, Morris JL, Mayer B. Multiple populations of neuropeptide-containing intrinsic neurons in the guinea-pig heart. Neurosci. 1994;62(1):241–50.

    Article  CAS  Google Scholar 

  53. Horackova M, Armour JA, Byczko Z. Distribution of intrinsic cardiac neurons in whole-mount guinea pig atria identified by multiple neurochemical coding. A confocal microscope study. Cell Tissue Res. 1999;297(3):409–21.

    Article  CAS  PubMed  Google Scholar 

  54. Leger J, Croll RP, Smith FM. Regional distribution and extrinsic innervation of intrinsic cardiac neurons in the guinea pig. J Comp Neurol. 1999;407(3):303–17.

    Article  CAS  PubMed  Google Scholar 

  55. Pauza DH, Skripkiene G, Skripka V, Pauziene N, Stropus R. Morphological study of neurons in the nerve plexus on heart base of rats and guinea pigs. J Auton Nerv Syst. 1997;62(1–2):1–12.

    Article  CAS  PubMed  Google Scholar 

  56. Pauza DH, Pauziene N, Pakeltyte G, Stropus R. Comparative quantitative study of the intrinsic cardiac ganglia and neurons in the rat, guinea pig, dog and human as revealed by histochemical staining for acetylcholinesterase. Ann Anat. 2002;184(2):125–36.

    Article  PubMed  Google Scholar 

  57. Arora RC, Waldmann M, Hopkins DA, Armour JA. Porcine intrinsic cardiac ganglia. Anat Rec Part A Discov Mol Cell Evol Biol. 2003;271(1):249–58.

    Article  CAS  Google Scholar 

  58. Saburkina I, Rysevaite K, Pauziene N, Mischke K, Schauerte P, Jalife J, et al. Epicardial neural ganglionated plexus of ovine heart: anatomic basis for experimental cardiac electrophysiology and nerve protective cardiac surgery. Heart Rhythm. 2010;7(7):942–50.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yuan BX, Ardell JL, Hopkins DA, Losier AM, Armour JA. Gross and microscopic anatomy of the canine intrinsic cardiac nervous system. Anat Rec. 1994;239(1):75–87.

    Article  CAS  PubMed  Google Scholar 

  60. Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec. 1997;247(2):289–98.

    Article  CAS  PubMed  Google Scholar 

  61. Pauza DH, Skripka V, Pauziene N, Stropus R. Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat Rec. 2000;259(4):353–82.

    Article  CAS  PubMed  Google Scholar 

  62. Randall DC, Brown DR, McGuirt AS, Thompson GW, Armour JA, Ardell JL. Interactions within the intrinsic cardiac nervous system contribute to chronotropic regulation. Am J Physiol Regul Integr Comp Physiol. 2003;285(5):R1066–75.

    Article  CAS  PubMed  Google Scholar 

  63. Gatti PJ, Johnson TA, Phan P, Jordan IK 3rd, Coleman W, Massari VJ. The physiological and anatomical demonstration of functionally selective parasympathetic ganglia located in discrete fat pads on the feline myocardium. J Auton Nerv Syst. 1995;51(3):255–9.

    Article  CAS  PubMed  Google Scholar 

  64. Armour JA. Cardiac neuronal hierarchy in health and disease. Am J Physiol Regul Integr Comp Physiol. 2004;287(2):R262–71.

    Article  CAS  PubMed  Google Scholar 

  65. Butler CK, Smith FM, Cardinal R, Murphy DA, Hopkins DA, Armour JA. Cardiac responses to electrical stimulation of discrete loci in canine atrial and ventricular ganglionated plexi. Am J Physiol. 1990;259(5 Pt 2):H1365–73.

    CAS  PubMed  Google Scholar 

  66. Butler CK, Smith FM, Nicholson J, Armour JA. Cardiac effects induced by chemically activated neurons in canine intrathoracic ganglia. Am J Physiol. 1990;259(4 Pt 2):H1108–17.

    CAS  PubMed  Google Scholar 

  67. Yuan BX, Ardell JL, Hopkins DA, Armour JA. Differential cardiac responses induced by nicotine sensitive canine atrial and ventricular neurones. Cardiovasc Res. 1993;27(5):760–9.

    Article  CAS  PubMed  Google Scholar 

  68. Cardinal R, Pagé P, Vermeulen M, Ardell JL, Armour JA. Spatially divergent cardiac responses to nicotinic stimulation of ganglionated plexus neurons in the canine heart. Auton Neurosci. 2009;145(1–2):55–62.

    Article  CAS  PubMed  Google Scholar 

  69. Dennis MJ, Harris AJ, Kuffler SW. Synaptic transmission and its duplication by focally applied acetylcholine in parasympathetic neurons in the heart of the frog. Proc Roy Soc London Ser B Biol Sci. 1971;177(1049):509–39.

    CAS  Google Scholar 

  70. Harris AJ, Kuffler SW, Dennis MJ. Differential chemosensitivity of synaptic and extrasynaptic areas on the neuronal surface membrane in parasympathetic neurons of the frog, tested by microapplication of acetylcholine. Proc Roy Soc London Ser B Biol Sci. 1971;177(1049):541–53.

    CAS  Google Scholar 

  71. McMahan UJ, Purves D. Visual identification of two kinds of nerve cells and their synaptic contacts in a living autonomic ganglion of the mudpuppy (Necturus maculosus). J Physiol. 1976;254(2):405–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hartzell HC, Kuffler SW, Stickgold R, Yoshikami D. Synaptic excitation and inhibition resulting from direct action of acetylcholine on two types of chemoreceptors on individual amphibian parasympathetic neurones. J Physiol. 1977;271(3):817–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Konopka LM, McKeon TW, Parsons RL. Galanin-induced hyperpolarization and decreased membrane excitability of neurones in mudpuppy cardiac ganglia. J Physiol. 1989;410:107–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Parsons RL, Barstow KL, Scornik FS. Spontaneous miniature hyperpolarizations affect threshold for action potential generation in mudpuppy cardiac neurons. J Neurophysiol. 2002;88(3):1119–27.

    Article  CAS  PubMed  Google Scholar 

  75. Allen T, Hassall C, Burnstock G. Mammalian intrinsic cardiac neurons in cell culture. In: Armour JA, Ardell JL, editors. Neurocardiology. New York: Oxford University Press; 1994. p. 115–38.

    Google Scholar 

  76. Allen TG, Burnstock G. Intracellular studies of the electrophysiological properties of cultured intracardiac neurones of the guinea-pig. J Physiol. 1987;388:349–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu ZJ, Adams DJ. Voltage-dependent sodium and calcium currents in cultured parasympathetic neurones from rat intracardiac ganglia. J Physiol. 1992;456:425–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Adams DJ, Cuevas J. Electrophysiological properties of intrinsic cardiac neurons. In: Armour JA, Ardell JL, editors. Basic and clinical neurocardiology. New York: Oxford University Press; 2004. p. 1–60.

    Google Scholar 

  79. Adams DJ, Harper AA. Electrophysiological properties of autonomic ganglion neurons. In: McLachlan EM, editor. Autonomic ganglia. London: Harwood Academic Publishers; 1995. p. 153–212.

    Google Scholar 

  80. Selyanko AA. Membrane properties and firing characteristics of rat cardiac neurones in vitro. J Auton Nerv Syst. 1992;39(3):181–9.

    Article  CAS  PubMed  Google Scholar 

  81. Xi XH, Thomas JXJ, Randall WC, Wurster RD. Intracellular recordings from canine intracardiac ganglion cells. J Auton Nerv Syst. 1991;32(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  82. Xi X, Randall WC, Wurster RD. Morphology of intracellularly labeled canine intracardiac ganglion cells. J Comp Neurol. 1991;314(2):396–402.

    Article  CAS  PubMed  Google Scholar 

  83. Griffith WH 3rd, Gallagher JP, Shinnick-Gallagher P. An intracellular investigation of cat vesical pelvic ganglia. J Neurophysiol. 1980;43(2):343–54.

    Article  PubMed  Google Scholar 

  84. Edwards FR, Hirst GD, Klemm MF, Steele PA. Different types of ganglion cell in the cardiac plexus of guinea-pigs. J Physiol. 1995;486(2):453–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Smith FM. Extrinsic inputs to intrinsic neurons in the porcine heart in vitro. Am J Physiol. 1999;276(2):R455–67.

    CAS  PubMed  Google Scholar 

  86. Xu ZJ, Adams DJ. Resting membrane potential and potassium currents in cultured parasympathetic neurones from rat intracardiac ganglia. J Physiol. 1992;456:405–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cuevas J, Harper AA, Trequattrini C, Adams DJ. Passive and active membrane properties of isolated rat intracardiac neurons: regulation by H- and M-currents. J Neurophysiol. 1997;78(4):1890–902.

    Article  CAS  PubMed  Google Scholar 

  88. Rimmer K, Harper AA. Developmental changes in electrophysiological properties and synaptic transmission in rat intracardiac ganglion neurons. J Neurophysiol. 2006;95(6):3543–52.

    Article  CAS  PubMed  Google Scholar 

  89. Dyavanapalli J, Rimmer K, Harper AA. The action of high K+ and aglycaemia on the electrical properties and synaptic transmission in rat intracardiac ganglion neurones in vitro. Exp Physiol. 2009;94(2):201–12.

    Article  CAS  PubMed  Google Scholar 

  90. McAllen RM, Salo LM, Paton JFR, Pickering AE. Processing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis. J Physiol. 2011;589(Pt 23):5801–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ashton JL, Argent L, Smith JEG, Jin S, Sands GB, Smaill BH, et al. Evidence of structural and functional plasticity occurring within the intracardiac nervous system of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2020;318(6):H1387–400.

    Article  CAS  PubMed  Google Scholar 

  92. Gibbins IL. Chemical neuroanatomy of sympathetic ganglia. In: McLachlan EM, editor. Autonomic Ganglia. Luxembourg: Harwood Academic Publishers; 1995. p. 73–122.

    Google Scholar 

  93. Morris JL, Gibbins IL, Holmgren S. Galanin is more common than NPY in vascular sympathetic neurons of the brush-tailed possum. Regul Pept. 1992;37(2):101–9.

    Article  CAS  PubMed  Google Scholar 

  94. Steele PA, Choate JK. Innervation of the pacemaker in guinea-pig sinoatrial node. J Auton Nerv Syst. 1994;47(3):177–87.

    Article  CAS  PubMed  Google Scholar 

  95. Steele PA, Gibbins IL, Morris JL. Projections of intrinsic cardiac neurons to different targets in the guinea-pig heart. J Auton Nerv Syst. 1996;56(3):191–200.

    Article  CAS  PubMed  Google Scholar 

  96. Hoover DB, Tompkins JD, Parsons RL. Differential activation of guinea pig intrinsic cardiac neurons by the PAC1 agonists maxadilan and pituitary adenylate cyclase-activating polypeptide 27 (PACAP27). J Pharmacol Exp Ther. 2009;331(1):197–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hoard JL, Hoover DB, Mabe AM, Blakely RD, Feng N, Paolocci N. Cholinergic neurons of mouse intrinsic cardiac ganglia contain noradrenergic enzymes, norepinephrine transporters, and the neurotrophin receptors tropomyosin-related kinase A and p75. Neurosci. 2008;156(1):129–42.

    Article  CAS  Google Scholar 

  98. Hoover DB, Isaacs ER, Jacques F, Hoard JL, Pagé P, Armour JA. Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia. Neurosci. 2009;164(3):1170–9.

    Article  CAS  Google Scholar 

  99. Rysevaite K, Saburkina I, Pauziene N, Vaitkevicius R, Noujaim SF, Jalife J, et al. Immunohistochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations. Heart Rhythm. 2011;8(5):731–8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Singh S, Johnson PI, Javed A, Gray TS, Lonchyna VA, Wurster RD. Monoamine- and histamine-synthesizing enzymes and neurotransmitters within neurons of adult human cardiac ganglia. Circulation. 1999;99(3):411–9.

    Article  CAS  PubMed  Google Scholar 

  101. Coote JH, Chauhan RA. The sympathetic innervation of the heart: important new insights. Auton Neurosci. 2016;199:17–23.

    Article  CAS  PubMed  Google Scholar 

  102. Parsons RL, Neel DS, McKeon TW, Carraway RE. Organization of a vertebrate cardiac ganglion: a correlated biochemical and histochemical study. J Neurosci. 1987;7(3):837–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. de Groat WC, Booth AM. Inhibition and facilitation in parasympathetic ganglia of the urinary bladder. Fed Proc. 1980;39(12):2990–6.

    PubMed  Google Scholar 

  104. Weihe E, Schütz B, Hartschuh W, Anlauf M, Schäfer MK, Eiden LE. Coexpression of cholinergic and noradrenergic phenotypes in human and nonhuman autonomic nervous system. J Comp Neurol. 2005;492(3):370–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hoover DB, Shepherd AV, Southerland EM, Armour JA, Ardell JL. Neurochemical diversity of afferent neurons that transduce sensory signals from dog ventricular myocardium. Auton Neurosci. 2008;141(1–2):38–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hardwick JC, Mawe GM, Parsons RL. Evidence for afferent fiber innervation of parasympathetic neurons of the guinea-pig cardiac ganglion. J Auton Nerv Syst. 1995;53(2–3):166–74.

    Article  CAS  PubMed  Google Scholar 

  107. Wang T, Miller KE. Characterization of glutamatergic neurons in the rat atrial intrinsic cardiac ganglia that project to the cardiac ventricular wall. Neurosci. 2016;329:134–50.

    Article  CAS  Google Scholar 

  108. Pauza DH, Rysevaite K, Inokaitis H, Jokubauskas M, Pauza AG, Brack KE, et al. Innervation of sinoatrial nodal cardiomyocytes in mouse. A combined approach using immunofluorescent and electron microscopy. J Mol Cell Cardiol. 2014;75:188–97.

    Article  CAS  PubMed  Google Scholar 

  109. Lee S-R, Cho Y, Cha M-J, Choi E-K, Seo J-W, Oh S. Atrial innervation patterns of intrinsic cardiac autonomic nerves. J Korean Med Sci. 2018;33(39):e253.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Beaumont E, Salavatian S, Southerland EM, Vinet A, Jacquemet V, Armour JA, et al. Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function. J Physiol. 2013;591(18):4515–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Seabrook GR, Fieber LA, Adams DJ. Neurotransmission in neonatal rat cardiac ganglion in situ. Am J Physiol. 1990;259(4 Pt 2):H997–1005.

    CAS  PubMed  Google Scholar 

  112. Furness JB, Callaghan BP, Rivera LR, Cho H-J. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 2014;817:39–71.

    Article  PubMed  Google Scholar 

  113. Huang MH, Smith FM, Armour JA. Modulation of in situ canine intrinsic cardiac neuronal activity by nicotinic, muscarinic, and beta-adrenergic agonists. Am J Physiol. 1993;265(3):R659–69.

    CAS  PubMed  Google Scholar 

  114. Masliukov PM, Moiseev K, Emanuilov AI, Anikina TA, Zverev AA, Nozdrachev AD. Development of neuropeptide Y-mediated heart innervation in rats. Neuropeptides. 2016;55:47–54.

    Article  CAS  PubMed  Google Scholar 

  115. Herring N, Paterson DJ. Neuromodulators of peripheral cardiac sympatho-vagal balance. Exp Physiol. 2009;94(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  116. Bosnjak ZJ, Seagard JL, Kampine JP. Peripheral neural input to neurons of the stellate ganglion in dog. Am J Physiol. 1982;242(3):R237–43.

    CAS  PubMed  Google Scholar 

  117. Brown AM. Cardiac reflexes. In: Berne RM, Sperelakis N, Geiger SR, editors. Handbook of physiology, section 2: The cardiovascular system Vol 1, The heart. Washington, DC: American Physiological Society; 1979. p. 677–89.

    Google Scholar 

  118. Ardell JL, Butler CK, Smith FM, Hopkins DA, Armour JA. Activity of in vivo atrial and ventricular neurons in chronically decentralized canine hearts. Am J Physiol. 1991;260(3):H713–21.

    CAS  PubMed  Google Scholar 

  119. Murphy DA, Thompson GW, Ardell JL, McCraty R, Stevenson RS, Sangalang VE, et al. The heart reinnervates after transplantation. Ann Thorac Surg. 2000;69(6):1769–81.

    Article  CAS  PubMed  Google Scholar 

  120. Spencer NJ, Kyloh M, Beckett EA, Brookes S, Hibberd T. Different types of spinal afferent nerve endings in stomach and esophagus identified by anterograde tracing from dorsal root ganglia. J Comp Neurol. 2016;524(15):3064–83.

    Article  CAS  PubMed  Google Scholar 

  121. Wang H-J, Rozanski GJ, Zucker IH. Cardiac sympathetic afferent reflex control of cardiac function in normal and chronic heart failure states. J Physiol. 2017;595(8):2519–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lázár BA, Jancsó G, Oszlács O, Nagy I, Sántha P. The insulin receptor is colocalized with the TRPV1 nociceptive ion channel and neuropeptides in pancreatic spinal and vagal primary sensory neurons. Pancreas. 2018;47(1):110–5.

    Article  PubMed  Google Scholar 

  123. Yoshie K, Rajendran PS, Massoud L, Kwon O, Tadimeti V, Salavatian S, et al. Cardiac vanilloid receptor-1 afferent depletion enhances stellate ganglion neuronal activity and efferent sympathetic response to cardiac stress. Am J Physiol. 2018;314(5):H954–66.

    CAS  Google Scholar 

  124. Shanks J, de Morais SDB, Gao L, Zucker IH, Wang H-J. TRPV1 (transient receptor potential vanilloid 1) cardiac spinal afferents contribute to hypertension in spontaneous hypertensive rat. Hypertension. 2019;74(4):910–20.

    Article  CAS  PubMed  Google Scholar 

  125. Liu X, Zhang Q, Han M, Du J. Intrapericardial capsaicin and bradykinin induce different cardiac-somatic and cardiovascular reflexes in rats. Auton Neurosci. 2016;198:28–32.

    Article  CAS  PubMed  Google Scholar 

  126. Xi X, Randall WC, Wurster RD. Intracellular recording of spontaneous activity of canine intracardiac ganglion cells. Neurosci Lett. 1991;128(1):129–32.

    Article  CAS  PubMed  Google Scholar 

  127. Smith FM, Vermeulen M, Cardinal R. Long-term spinal cord stimulation modifies canine intrinsic cardiac neuronal properties and ganglionic transmission during high-frequency repetitive activation. Physiol Rep. 2016;4(13):e12855.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Salavatian S, Beaumont E, Longpré J-P, Armour JA, Vinet A, Jacquemet V, et al. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation. Am J Physiol. 2016;311(5):H1311–20.

    Google Scholar 

  129. Treweek JB, Gradinaru V. Extracting structural and functional features of widely distributed biological circuits with single cell resolution via tissue clearing and delivery vectors. Curr Opin Biotechnol. 2016;40:193–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 2014;159(4):896–910.

    Article  CAS  PubMed  Google Scholar 

  131. Richardson DS, Lichtman JW. Clarifying tissue clearing. Cell. 2015;162(2):246–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Treweek JB, Chan KY, Flytzanis NC, Yang B, Deverman BE, Greenbaum A, et al. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat Protoc. 2015;10(11):1860–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mano T, Albanese A, Dodt H-U, Erturk A, Gradinaru V, Treweek JB, et al. Whole-brain analysis of cells and circuits by tissue clearing and light-sheet microscopy. J Neurosci. 2018;38(44):9330–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bedbrook CN, Deverman BE, Gradinaru V. Viral strategies for targeting the central and peripheral nervous systems. Annu Rev Neurosci. 2018;41:323–48.

    Article  CAS  PubMed  Google Scholar 

  135. Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu W-L, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci. 2017;20(8):1172–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rajendran PS, Challis RC, Fowlkes CC, Hanna P, Tompkins JD, Jordan MC, et al. Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nat Commun. 2019;10(1):1944.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Saito T, Tenma K. Effects of left and right vagal stimulation on excitation and conduction of the carp heart (Cyprinus carpio). J Comp Physiol. 1976;111:39–53.

    Article  Google Scholar 

  138. Gut P, Reischauer S, Stainier DYR, Arnaout R. Little fish, big data: zebrafish as a model for cardiovascular and metabolic disease. Physiol Rev. 2017;97(3):889–938.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Woo K, Shih J, Fraser SE. Fate maps of the zebrafish embryo. Curr Opin Genet Dev. 1995;5(4):439–43.

    Article  CAS  PubMed  Google Scholar 

  140. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253–310.

    Article  CAS  PubMed  Google Scholar 

  141. Briggs JP. The zebrafish: a new model organism for integrative physiology. Am J Physiol. 2002;282(1):R3–9.

    CAS  Google Scholar 

  142. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Genge CE, Lin E, Lee L, Sheng X, Rayani K, Gunawan M, et al. The zebrafish heart as a model of mammalian cardiac function. Rev Physiol Biochem Pharmacol. 2016;171:99–136.

    Article  CAS  PubMed  Google Scholar 

  144. Shrestha R, Lieberth J, Tillman S, Natalizio J, Bloomekatz J. Using zebrafish to analyze the genetic and environmental etiologies of congenital heart defects. Adv Exp Med Biol. 2020;1236:189–223.

    Article  CAS  PubMed  Google Scholar 

  145. Rafferty SA, Quinn TA. A beginner’s guide to understanding and implementing the genetic modification of zebrafish. Prog Biophys Mol Biol. 2018;138:3–19.

    Article  CAS  PubMed  Google Scholar 

  146. Vornanen M, Hassinen M. Zebrafish heart as a model for human cardiac electrophysiology. Channels. 2016;10(2):101–10.

    Article  PubMed  Google Scholar 

  147. Nemtsas P, Wettwer E, Christ T, Weidinger G, Ravens U. Adult zebrafish heart as a model for human heart? An electrophysiological study. J Mol Cell Cardiol. 2010;48(1):161–71.

    Article  CAS  PubMed  Google Scholar 

  148. Brette F, Luxan G, Cros C, Dixey H, Wilson C, Shiels HA. Characterization of isolated ventricular myocytes from adult zebrafish (Danio rerio). Biochem Biophys Res Commun. 2008;374(1):143–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ravens U. Ionic basis of cardiac electrophysiology in zebrafish compared to human hearts. Prog Biophys Mol Biol. 2018;38:38–44.

    Article  Google Scholar 

  150. Rayani K, Lin E, Craig C, Lamothe M, Shafaattalab S, Gunawan M, et al. Zebrafish as a model of mammalian cardiac function: optically mapping the interplay of temperature and rate on voltage and calcium dynamics. Prog Biophys Mol Biol. 2018;138:69–90.

    Article  CAS  PubMed  Google Scholar 

  151. Dvornikov AV, de Tombe PP, Xu X. Phenotyping cardiomyopathy in adult zebrafish. Prog Biophys Mol Biol. 2018;138:116–25.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Haverinen J, Hassinen M, Korajoki H, Vornanen M. Cardiac voltage-gated sodium channel expression and electrophysiological characterization of the sodium current in the zebrafish (Danio rerio) ventricle. Prog Biophys Mol Biol. 2018;138:59–68.

    Article  CAS  PubMed  Google Scholar 

  153. Hull CM, Genge CE, Hobbs Y, Rayani K, Lin E, Gunawan M, et al. Investigating the utility of adult zebrafish ex vivo whole hearts to pharmacologically screen hERG channel activator compounds. Am J Physiol. 2019;317(6):R921–31.

    CAS  Google Scholar 

  154. Verkerk AO, Remme CA. Zebrafish: a novel research tool for cardiac (patho)electrophysiology and ion channel disorders. Front Physiol. 2012;3:255.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Lin E, Shafaattalab S, Gill J, Al-Zeer B, Craig C, Lamothe M, et al. Physiological phenotyping of the adult zebrafish heart. Mar Genomics. 2020;49:100701.

    Article  PubMed  Google Scholar 

  156. Stoyek MR, Croll RP, Smith FM. Intrinsic and extrinsic innervation of the heart in zebrafish (Danio rerio). J Comp Neurol. 2015;523(11):1683–700.

    Article  CAS  PubMed  Google Scholar 

  157. Christoffels VM, Smits GJ, Kispert A, Moorman AFM. Development of the pacemaker tissues of the heart. Circ Res. 2010;106(2):240–54.

    Article  CAS  PubMed  Google Scholar 

  158. Stoyek MR, Quinn TA, Croll RP, Smith FM. Zebrafish heart as a model to study the integrative autonomic control of pacemaker function. Am J Physiol. 2016;311(3):H676–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, F.M. (2023). Fundamental Neurocardiology: The Intracardiac Nervous System. In: Tripathi, O.N., Quinn, T.A., Ravens, U. (eds) Heart Rate and Rhythm. Springer, Cham. https://doi.org/10.1007/978-3-031-33588-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33588-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33587-7

  • Online ISBN: 978-3-031-33588-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics