Skip to main content

Cardiac Pacemaking Is an Emergent Property of Complex Synchronized Signaling on Multiple Scales

  • Chapter
  • First Online:
Heart Rate and Rhythm
  • 260 Accesses

Abstract

The generation of automaticity in the sinoatrial node is a multiscale process involving the integration of complex biochemical and biophysical processes, including a membrane clock and a calcium clock operating in a coupled-clock system within single cells and further complex integration of heterogeneous intercellular signaling at the tissue level. Our current understanding of these processes is reviewed in detail. Ground-breaking recent studies in intact SAN have discovered a new paradigm of SAN operation, and this, along with other frontiers in pacemaker research, are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monfredi O, Maltsev VA, Lakatta EG. Modern concepts concerning the origin of the heartbeat. Physiology (Bethesda). 2013;28(2):74–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bychkov R, Juhaszova M, Tsutsui K, Coletta C, Stern MD, Maltsev VA, et al. Synchronized cardiac impulses emerge from heterogeneous local calcium signals within and among cells of pacemaker tissue. JACC Clin Electrophysiol. 2020;6(8):907–31.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88(3):919–82.

    Article  CAS  PubMed  Google Scholar 

  4. Maltsev VA, Vinogradova TM, Lakatta EG. The emergence of a general theory of the initiation and strength of the heartbeat. J Pharmacol Sci. 2006;100(5):338–69.

    Article  CAS  PubMed  Google Scholar 

  5. Yue X, Hazan A, Lotteau S, Zhang R, Torrente AG, Philipson KD, et al. Na/Ca exchange in the atrium: Role in sinoatrial node pacemaking and excitation-contraction coupling. Cell Calcium. 2020;87:102167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kohajda Z, Loewe A, Toth N, Varro A, Nagy N. The cardiac pacemaker story-fundamental role of the Na(+)/Ca(2+) exchanger in spontaneous automaticity. Front Pharmacol. 2020;11:516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maltsev VA, Lakatta EG. Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model. Am J Physiol Heart Circ Physiol. 2009;296(3):H594–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res. 2010;106:659–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maltsev VA, Lakatta EG. A novel quantitative explanation for autonomic modulation of cardiac pacemaker cell automaticity via a dynamic system of sarcolemmal and intracellular proteins. Am J Physiol Heart Circ Physiol. 2010;298:H2010–H23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maltsev VA, Lakatta EG. Numerical models based on a minimal set of sarcolemmal electrogenic proteins and an intracellular Ca clock generate robust, flexible, and energy-efficient cardiac pacemaking. J Mol Cell Cardiol. 2013;59:181–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maltsev VA, Yaniv Y, Maltsev AV, Stern MD, Lakatta EG. Modern perspectives on numerical modeling of cardiac pacemaker cell. J Pharmacol Sci. 2014;125:6–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yaniv Y, Lakatta EG, Maltsev VA. From two competing oscillators to one coupled-clock pacemaker cell system. Front Physiol. 2015;6:28.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lakatta EG. Heartbeat music. Heart Rhythm. 2021;18(5):811–2. https://doi.org/10.1016/j.hrthm.2021.01.011.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Clancy CE, Santana LF. Evolving discovery of the origin of the heartbeat: a new perspective on sinus rhythm. JACC Clin Electrophysiol. 2020;6(8):932–4.

    Article  PubMed  Google Scholar 

  15. Weiss JN, Qu Z. The sinus node: still mysterious after all these years. JACC Clin Electrophysiol. 2020;6(14):1841–3.

    Article  PubMed  Google Scholar 

  16. Monfredi O, Maltseva LA, Spurgeon HA, Boyett MR, Lakatta EG, Maltsev VA. Beat-to-beat variation in periodicity of local calcium releases contributes to intrinsic variations of spontaneous cycle length in isolated single sinoatrial node cells. PLoS One. 2013;8(6):e67247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vinogradova TM, Brochet DX, Sirenko S, Li Y, Spurgeon H, Lakatta EG. Sarcoplasmic reticulum Ca2+ pumping kinetics regulates timing of local Ca2+ releases and spontaneous beating rate of rabbit sinoatrial node pacemaker cells. Circ Res. 2010;107(6):767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maltsev AV, Maltsev VA, Mikheev M, Maltseva LA, Sirenko SG, Lakatta EG, et al. Synchronization of stochastic Ca2+ release units creates a rhythmic Ca2+ clock in cardiac pacemaker cells. Biophys J. 2011;100:271–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stern MD, Maltseva LA, Juhaszova M, Sollott SJ, Lakatta EG, Maltsev VA. Hierarchical clustering of ryanodine receptors enables emergence of a calcium clock in sinoatrial node cells. J Gen Physiol. 2014;143(5):577–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bogdanov KY, Maltsev VA, Vinogradova TM, Lyashkov AE, Spurgeon HA, Stern MD, et al. Membrane potential fluctuations resulting from submembrane Ca2+ releases in rabbit sinoatrial nodal cells impart an exponential phase to the late diastolic depolarization that controls their chronotropic state. Circ Res. 2006;99(9):979–87.

    Article  CAS  PubMed  Google Scholar 

  21. Vinogradova TM, Zhou YY, Maltsev V, Lyashkov A, Stern M, Lakatta EG. Rhythmic ryanodine receptor Ca2+ releases during diastolic depolarization of sinoatrial pacemaker cells do not require membrane depolarization. Circ Res. 2004;94(6):802–9.

    Article  CAS  PubMed  Google Scholar 

  22. Vinogradova TM, Lyashkov AE, Zhu W, Ruknudin AM, Sirenko S, Yang D, et al. High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca2+ store oscillations and spontaneous beating of cardiac pacemaker cells. Circ Res. 2006;98(4):505–14.

    Article  CAS  PubMed  Google Scholar 

  23. Huser J, Blatter LA, Lipsius SL. Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol. 2000;524(Pt 2):415–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, et al. Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A. 2003;100(9):5543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baig SM, Koschak A, Lieb A, Gebhart M, Dafinger C, Nurnberg G, et al. Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci. 2011;14(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  26. Torrente AG, Mesirca P, Neco P, Rizzetto R, Dubel S, Barrere C, et al. L-type Cav1.3 channels regulate ryanodine receptor-dependent Ca2+ release during sino-atrial node pacemaker activity. Cardiovasc Res. 2016;109(3):451–61.

    Article  CAS  PubMed  Google Scholar 

  27. Lyashkov AE, Behar J, Lakatta EG, Yaniv Y, Maltsev VA. Positive feedback mechanisms among local Ca releases, NCX, and ICaL ignite pacemaker action potentials. Biophys J. 2018;114(5):1176–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yaniv Y, Sirenko S, Ziman BD, Spurgeon HA, Maltsev VA, Lakatta EG. New evidence for coupled clock regulation of the normal automaticity of sinoatrial nodal pacemaker cells: Bradycardic effects of ivabradine are linked to suppression of intracellular Ca cycling. J Mol Cell Cardiol. 2013;62C:80–9.

    Article  Google Scholar 

  29. Gao Z, Rasmussen TP, Li Y, Kutschke W, Koval OM, Wu Y, et al. Genetic inhibition of Na+-Ca2+ exchanger current disables fight or flight sinoatrial node activity without affecting resting heart rate. Circ Res. 2013;112(2):309–17.

    Article  CAS  PubMed  Google Scholar 

  30. Maltsev AV, Yaniv Y, Stern MD, Lakatta EG, Maltsev VA. RyR-NCX-SERCA local crosstalk ensures pacemaker cell function at rest and during the fight-or-flight reflex. Circ Res. 2013;113(10):e94–e100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stern MD, Song LS, Cheng H, Sham JS, Yang HT, Boheler KR, et al. Local control models of cardiac excitation-contraction coupling. A possible role for allosteric interactions between ryanodine receptors. J Gen Physiol. 1999;113(3):469–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koivumaki JT, Korhonen T, Takalo J, Weckstrom M, Tavi P. Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling. BMC Physiol. 2009;9:16.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Torrente AG, Zhang R, Wang H, Zaini A, Kim B, Yue X, et al. Contribution of small conductance K+ channels to sinoatrial node pacemaker activity: insights from atrial-specific Na+/Ca2+ exchange knockout mice. J Physiol. 2017;595(12):3847–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sirenko SG, Maltsev VA, Yaniv Y, Bychkov R, Yaeger D, Vinogradova T, et al. Electrochemical Na+ and Ca2+ gradients drive coupled-clock regulation of automaticity of isolated rabbit sinoatrial nodal pacemaker cells. Am J Physiol Heart Circ Physiol. 2016;311(1):H251–67.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Maltsev AV, Maltsev VA, Stern MD. Clusters of calcium release channels harness the Ising phase transition to confine their elementary intracellular signals. Proc Natl Acad Sci U S A. 2017;114(29):7525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maltsev AV, Stern MD, Maltsev VA. Mechanisms of calcium leak from cardiac sarcoplasmic reticulum revealed by statistical mechanics. Biophys J. 2019;116(11):2212–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ju YK, Chu Y, Chaulet H, Lai D, Gervasio OL, Graham RM, et al. Store-operated Ca2+ influx and expression of TRPC genes in mouse sinoatrial node. Circ Res. 2007;100(11):1605–14.

    Article  CAS  PubMed  Google Scholar 

  38. Liu J, Xin L, Benson VL, Allen DG, Ju YK. Store-operated calcium entry and the localization of STIM1 and Orai1 proteins in isolated mouse sinoatrial node cells. Front Physiol. 2015;6:69.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ju YK, Lee BH, Trajanovska S, Hao G, Allen DG, Lei M, et al. The involvement of TRPC3 channels in sinoatrial arrhythmias. Front Physiol. 2015;6:86.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ju YK, Liu J, Lee BH, Lai D, Woodcock EA, Lei M, et al. Distribution and functional role of inositol 1,4,5-trisphosphate receptors in mouse sinoatrial node. Circ Res. 2011;109(8):848–57.

    Article  CAS  PubMed  Google Scholar 

  41. Kapoor N, Tran A, Kang J, Zhang R, Philipson KD, Goldhaber JI. Regulation of calcium clock-mediated pacemaking by inositol-1,4,5-trisphosphate receptors in mouse sinoatrial nodal cells. J Physiol. 2015;593(12):2649–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weisbrod D, Peretz A, Ziskind A, Menaker N, Oz S, Barad L, et al. SK4 Ca2+ activated K+ channel is a critical player in cardiac pacemaker derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2013;110(18):E1685–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haron-Khun S, Weisbrod D, Bueno H, Yadin D, Behar J, Peretz A, et al. SK4 K+ channels are therapeutic targets for the treatment of cardiac arrhythmias. EMBO Mol Med. 2017;9(4):415–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mattick P, Parrington J, Odia E, Simpson A, Collins T, Terrar D. Ca2+-stimulated adenylyl cyclase isoform AC1 is preferentially expressed in guinea-pig sino-atrial node cells and modulates the If pacemaker current. J Physiol. 2007;582(Pt 3):1195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Younes A, Lyashkov AE, Graham D, Sheydina A, Volkova MV, Mitsak M, et al. Ca2+-stimulated basal adenylyl cyclase activity localization in membrane lipid microdomains of cardiac sinoatrial nodal pacemaker cells. J Biol Chem. 2008;283(21):14461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sirenko S, Yang D, Li Y, Lyashkov AE, Lukyanenko YO, Lakatta EG, et al. Ca2+-dependent phosphorylation of Ca2+ cycling proteins generates robust rhythmic local Ca2+ releases in cardiac pacemaker cells. Sci Signal. 2012;6(260):ra6.

    Google Scholar 

  47. Boink GJ, Nearing BD, Shlapakova IN, Duan L, Kryukova Y, Bobkov Y, et al. Ca2+-stimulated adenylyl cyclase AC1 generates efficient biological pacing as single gene therapy and in combination with HCN2. Circulation. 2012;126(5):528–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maltsev VA, Lakatta EG, Zahanich I, Sirenko S, Mikheev M, Vodovotz Y. engineered biological pacemakers patent US9506032B2 granted. 2016. https://patents.google.com/patent/US9506032B2/en

  49. Moen JM, Matt MG, Ramirez C, Tarasov KV, Chakir K, Tarasova YS, et al. Overexpression of a neuronal type adenylyl cyclase (type 8) in sinoatrial node markedly impacts heart rate and rhythm. Front Neurosci. 2019;13:615.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yaniv Y, Ganesan A, Yang D, Ziman BD, Lyashkov AE, Levchenko A, et al. Real-time relationship between PKA biochemical signal network dynamics and increased action potential firing rate in heart pacemaker cells: Kinetics of PKA activation in heart pacemaker cells. J Mol Cell Cardiol. 2015;86:168–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li Y, Sirenko S, Riordon DR, Yang D, Spurgeon H, Lakatta EG, et al. CaMKII-dependent phosphorylation regulates basal cardiac pacemaker function via modulation of local Ca2+ releases. Am J Physiol Heart Circ Physiol. 2016;311(3):H532–44.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yaniv Y, Maltsev VA. Numerical modeling calcium and CaMKII effects in the SA node. Front Pharmacol. 2014;5:58.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vinogradova TM, Zhou YY, Bogdanov KY, Yang D, Kuschel M, Cheng H, et al. Sinoatrial node pacemaker activity requires Ca2+/calmodulin-dependent protein kinase II activation. Circ Res. 2000;87(9):760–7.

    Article  CAS  PubMed  Google Scholar 

  54. Wu Y, Gao Z, Chen B, Koval OM, Singh MV, Guan X, et al. Calmodulin kinase II is required for fight or flight sinoatrial node physiology. Proc Natl Acad Sci U S A. 2009;106(14):5972–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vinogradova TM, Sirenko S, Lyashkov AE, Younes A, Li Y, Zhu W, et al. Constitutive phosphodiesterase activity restricts spontaneous beating rate of cardiac pacemaker cells by suppressing local Ca2+ releases. Circ Res. 2008;102:761–9.

    Article  CAS  PubMed  Google Scholar 

  56. Vinogradova TM, Kobrinsky E, Lakatta EG. Dual activation of phosphodiesterases 3 and 4 regulates basal spontaneous beating rate of cardiac pacemaker cells: role of compartmentalization? Front Physiol. 2018;9:1301.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vinogradova TM, Sirenko S, Lukyanenko YO, Yang D, Tarasov KV, Lyashkov AE, et al. Basal spontaneous firing of rabbit sinoatrial node cells is regulated by dual activation of PDEs (phosphodiesterases) 3 and 4. Circ Arrhythm Electrophysiol. 2018;11(6):e005896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zahanich I, Li Y, Lyashkov AE, Lukyanenko YO, Vinogradova TM, Younes A, et al. Protein phosphatase 1 regulates normal automaticity of the heart’s pacemaker node cells by site-specific modulation of phospholamban phosphorylation that regulates spontaneous subsarcolemmal local Ca2+ releases. Circulation. 2010;122:A21546. (Abstract)

    Google Scholar 

  59. Monfredi O, Lakatta EG. Complexities in cardiovascular rhythmicity: perspectives on circadian normality, ageing and disease. Cardiovasc Res. 2019;115(11):1576–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sirenko S, Maltsev VA, Maltseva LA, Yang D, Lukyanenko Y, Vinogradova TM, et al. Sarcoplasmic reticulum Ca cycling protein phosphorylation in a physiologic Ca milieu unleashes a high-power, rhythmic Ca clock in ventricular myocytes: Relevance to arrhythmias and bio-pacemaker design. J Mol Cell Cardiol. 2014;66C:106–15.

    Article  Google Scholar 

  61. Maltsev AV, Maltsev VA, Stern MD. Stabilization of diastolic calcium signal via calcium pump regulation of complex local calcium releases and transient decay in a computational model of cardiac pacemaker cell with individual release channels. PLoS Comput Biol. 2017;13(8):e1005675.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fenske S, Hennis K, Rotzer RD, Brox VF, Becirovic E, Scharr A, et al. cAMP-dependent regulation of HCN4 controls the tonic entrainment process in sinoatrial node pacemaker cells. Nat Commun. 2020;11(1):5555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ju YK, Allen DG. How does beta-adrenergic stimulation increase the heart rate? The role of intracellular Ca2+ release in amphibian pacemaker cells. J Physiol. 1999;516(Pt 3):793–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rigg L, Heath BM, Cui Y, Terrar DA. Localisation and functional significance of ryanodine receptors during beta-adrenoceptor stimulation in the guinea-pig sino-atrial node. Cardiovasc Res. 2000;48(2):254–64.

    Article  CAS  PubMed  Google Scholar 

  65. Vinogradova TM, Bogdanov KY, Lakatta EG. beta-Adrenergic stimulation modulates ryanodine receptor Ca2+ release during diastolic depolarization to accelerate pacemaker activity in rabbit sinoatrial nodal cells. Circ Res. 2002;90(1):73–9.

    Article  CAS  PubMed  Google Scholar 

  66. Yaniv Y, Juhaszova M, Lyashkov AE, Spurgeon HA, Sollott SJ, Lakatta EG. Ca2+-regulated-cAMP/PKA signaling in cardiac pacemaker cells links ATP supply to demand. J Mol Cell Cardiol. 2011;51(5):740–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ju YK, Allen DG. Early effects of metabolic inhibition on intracellular Ca2+ in toad pacemaker cells: involvement of Ca2+ stores. Am J Physiol Heart Circ Physiol. 2003;284(4):H1087–94.

    Article  CAS  PubMed  Google Scholar 

  68. Covian R, Balaban RS. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation. Am J Physiol Heart Circ Physiol. 2012;303(8):H940–H66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yaniv Y, Spurgeon HA, Lyashkov AE, Yang D, Ziman BD, Maltsev VA, et al. Crosstalk between mitochondrial and sarcoplasmic reticulum Ca2+ cycling modulates cardiac pacemaker cell automaticity. PLoS One. 2012;7(5):e37582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lang D, Glukhov AV. Functional microdomains in heart’s pacemaker: a step beyond classical electrophysiology and remodeling. Front Physiol. 2018;9:1686.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Verkerk AO, van Borren MM, Peters RJ, Broekhuis E, Lam KY, Coronel R, et al. Single cells isolated from human sinoatrial node: action potentials and numerical reconstruction of pacemaker current. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:904–7.

    Google Scholar 

  72. Tsutsui K, Monfredi O, Sirenko-Tagirova SG, Maltseva LA, Bychkov R, Kim MS, et al. A coupled-clock system drives the automaticity of human sinoatrial nodal pacemaker cells. Science signaling. 2018;11:eaap7608.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tagirova S, Tsutsui K, Yang D, Ziman B, Tarasov KV, Yaniv Y, et al. Local calcium signals in pacemaker cells heart rate and body mass are self-similar from mice to humans. BioRxiv. 2021. https://www.biorxiv.org/content/10.1101/2020.10.26.355412v1

  74. Wilders R, Jongsma HJ. Beating irregularity of single pacemaker cells isolated from the rabbit sinoatrial node. Biophys J. 1993;65(6):2601–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yaniv Y, Maltsev VA, Escobar AL, Spurgeon HA, Ziman BD, Stern MD, et al. Beat-to-beat Ca2+-dependent regulation of sinoatrial nodal pacemaker cell rate and rhythm. J Mol Cell Cardiol. 2011;51(6):902–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yaniv Y, Stern MD, Lakatta EG, Maltsev VA. Mechanisms of beat-to-beat regulation of cardiac pacemaker cell function by Ca2+ cycling dynamics. Biophys J. 2013;105(7):1551–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yaniv Y, Lyashkov AE, Sirenko S, Okamoto Y, Guiriba TR, Ziman BD, et al. Stochasticity intrinsic to coupled-clock mechanisms underlies beat-to-beat variability of spontaneous action potential firing in sinoatrial node pacemaker cells. J Mol Cell Cardiol. 2014;77:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu J, Sirenko S, Juhaszova M, Ziman B, Shetty V, Rain S, et al. A full range of mouse sinoatrial node AP firing rates requires protein kinase A-dependent calcium signaling. J Mol Cell Cardiol. 2011;51(5):730–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu J, Sirenko S, Juhaszova M, Sollott SJ, Shukla S, Yaniv Y, et al. Age-associated abnormalities of intrinsic automaticity of sinoatrial nodal cells are linked to deficient cAMP-PKA-Ca2+ signaling. Am J Physiol Heart Circ Physiol. 2014;306(10):H1385–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yaniv Y, Ahmet I, Tsutsui K, Behar J, Moen JM, Okamoto Y, et al. Deterioration of autonomic neuronal receptor signaling and mechanisms intrinsic to heart pacemaker cells contribute to age-associated alterations in heart rate variability in vivo. Aging Cell. 2016;15(4):716–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang D, Lyashkov A, Morrell CH, Zahanich I, Yaniv Y, Vinogradova T, et al. Self-similar action potential cycle-to-cycle variability of Ca2+ and current oscillators in cardiac pacemaker cells. BioRxiv. 2021. https://www.biorxiv.org/content/10.1101/2020.09.01.277756v1.full

  82. Kim MS, Maltsev AV, Monfredi O, Maltseva LA, Wirth A, Florio MC, et al. Heterogeneity of calcium clock functions in dormant, dysrhythmically and rhythmically firing single pacemaker cells isolated from SA node. Cell Calcium. 2018;74:168–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Musa H, Lei M, Honjo H, Jones SA, Dobrzynski H, Lancaster MK, et al. Heterogeneous expression of Ca2+ handling proteins in rabbit sinoatrial node. J Histochem Cytochem. 2002;50(3):311–24.

    Article  CAS  PubMed  Google Scholar 

  84. Honjo H, Boyett MR, Kodama I, Toyama J. Correlation between electrical activity and the size of rabbit sino-atrial node cells. J Physiol. 1996;496(Pt 3):795–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Monfredi O, Tsutsui K, Ziman B, Stern MD, Lakatta EG, Maltsev VA. Electrophysiological heterogeneity of pacemaker cells in the rabbit intercaval region, including the SA node: insights from recording multiple ion currents in each cell. Am J Physiol Heart Circ Physiol. 2018;314(3):H403–H14.

    Article  PubMed  Google Scholar 

  86. Boyett MR, Honjo H, Kodama I. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res. 2000;47(4):658–87.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang H, Holden AV, Boyett MR. Gradient model versus mosaic model of the sinoatrial node. Circulation. 2001;103(4):584–8.

    Article  CAS  PubMed  Google Scholar 

  88. Inokaitis H, Pauziene N, Rysevaite-Kyguoliene K, Pauza DH. Innervation of sinoatrial nodal cells in the rabbit. Ann Anat. 2016;205:113–21.

    Article  PubMed  Google Scholar 

  89. Quinn TA, Kohl P. Mechano-sensitivity of cardiac pacemaker function: pathophysiological relevance, experimental implications, and conceptual integration with other mechanisms of rhythmicity. Prog Biophys Mol Biol. 2012;110(2-3):257–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Iyer R, Monfredi O, Lavorato M, Terasaki M, Franzini-Armstrong C. Ultrastructure of primary pacemaking cells in rabbit sino-atrial node cells indicates limited sarcoplasmic reticulum content. FASEB Bioadv. 2020;2(2):106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bleeker WK, Mackaay AJ, Masson-Pevet M, Bouman LN, Becker AE. Functional and morphological organization of the rabbit sinus node. Circ Res. 1980;46(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  92. Efimov IR, Nikolski VP, Salama G. Optical imaging of the heart. Circ Res. 2004;95(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  93. Lang D, Petrov V, Lou Q, Osipov G, Efimov IR. Spatiotemporal control of heart rate in a rabbit heart. J Electrocardiol. 2011;44(6):626–34.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Li N, Hansen BJ, Csepe TA, Zhao J, Ignozzi AJ, Sul LV, et al. Redundant and diverse intranodal pacemakers and conduction pathways protect the human sinoatrial node from failure. Sci Transl Med. 2017;9(400)

    Google Scholar 

  95. Sano T, Sawanobori T, Adaniya H. Mechanism of rhythm determination among pacemaker cells of the mammalian sinus node. Am J Physiol. 1978;235(4):H379–84.

    CAS  PubMed  Google Scholar 

  96. Winfree AT. Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol. 1967;16(1):15–42.

    Article  CAS  PubMed  Google Scholar 

  97. Jalife J. Mutual entrainment and electrical coupling as mechanisms for synchronous firing of rabbit sino-atrial pace-maker cells. J Physiol. 1984;356:221–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Michaels DC, Matyas EP, Jalife J. Mechanisms of sinoatrial pacemaker synchronization: a new hypothesis. Circ Res. 1987;61(5):704–14.

    Article  CAS  PubMed  Google Scholar 

  99. Anumonwo JM, Delmar M, Vinet A, Michaels DC, Jalife J. Phase resetting and entrainment of pacemaker activity in single sinus nodal cells. Circ Res. 1991;68(4):1138–53.

    Article  CAS  PubMed  Google Scholar 

  100. Schuessler RB, Boineau JP, Bromberg BI. Origin of the sinus impulse. J Cardiovasc Electrophysiol. 1996;7(3):263–74.

    Article  CAS  PubMed  Google Scholar 

  101. Verheijck EE, Wilders R, Joyner RW, Golod DA, Kumar R, Jongsma HJ, et al. Pacemaker synchronization of electrically coupled rabbit sinoatrial node cells. J Gen Physiol. 1998;111(1):95–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Neco P, Torrente AG, Mesirca P, Zorio E, Liu N, Priori SG, et al. Paradoxical effect of increased diastolic Ca2+ release and decreased sinoatrial node activity in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circulation. 2012;126(4):392–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Torrente AG, Zhang R, Zaini A, Giani JF, Kang J, Lamp ST, et al. Burst pacemaker activity of the sinoatrial node in sodium-calcium exchanger knockout mice. Proc Natl Acad Sci U S A. 2015;112(31):9769–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Feldman JL, Kam K. Facing the challenge of mammalian neural microcircuits: taking a few breaths may help. J Physiol. 2015;593(1):3–23.

    Article  CAS  PubMed  Google Scholar 

  105. Lee MY, Ha SE, Park C, Park PJ, Fuchs R, Wei L, et al. Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures. PLoS One. 2017;12(4):e0176031.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bru-Mercier G, Gullam JE, Thornton S, Blanks AM, Shmygol A. Characterization of the tissue-level Ca2+ signals in spontaneously contracting human myometrium. J Cell Mol Med. 2012;16(12):2990–3000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hennis K, Biel M, Wahl-Schott C, Fenske S. Beyond pacemaking: HCN channels in sinoatrial node function. Prog Biophys Mol Biol. 2021;166:51–60.

    Article  CAS  PubMed  Google Scholar 

  108. Rosen MR, Robinson RB, Brink PR, Cohen IS. The road to biological pacing. Nat Rev. 2011;8(11):656–66.

    Google Scholar 

  109. Cingolani E, Goldhaber JI, Marban E. Next-generation pacemakers: from small devices to biological pacemakers. Nat Rev. 2018;15(3):139–50.

    Google Scholar 

  110. Kapoor N, Liang W, Marbán E, Cho HC. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat Biotechnol. 2013;31(1):54–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the National Institutes of Health and the National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward G. Lakatta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monfredi, O., Kim, D., Maltsev, V.A., Lakatta, E.G. (2023). Cardiac Pacemaking Is an Emergent Property of Complex Synchronized Signaling on Multiple Scales. In: Tripathi, O.N., Quinn, T.A., Ravens, U. (eds) Heart Rate and Rhythm. Springer, Cham. https://doi.org/10.1007/978-3-031-33588-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33588-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33587-7

  • Online ISBN: 978-3-031-33588-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics