Skip to main content

Implications of Sarcolemmal Ca2+-Handling Proteins in Heart Function in Health and Disease

  • Chapter
  • First Online:
Heart Rate and Rhythm

Abstract

A small amount of Ca2+ enters the cell through the sarcolemmal membrane, releases an additional amount of Ca2+ from the sarcoplasmic reticulum, and initiates myocardial contraction. The contraction process is terminated upon lowering the cytosolic Ca2+ by accumulation in the sarcoplasmic reticulum as well as removal into the extracellular space through the sarcolemmal membrane. This article describes sarcolemmal L-type Ca2+ channel, Na+–Ca2+ exchanger, store-operated Ca2+ channels, Ca2+-pump ATPase, Ca2+/Mg2+ecto-ATPase, Na+-H+ exchanger, and Na+-K+ ATPase, which directly or indirectly regulate the movements of Ca2+ in cardiomyocytes. The pharmacological modulation of these Ca2+-handling proteins has been indicated to gain information regarding the regulation of intracellular Ca2+ in cardiomyocytes. Furthermore, alterations in the sarcolemmal Ca2+-handling proteins in different cardiovascular pathologies have been identified to emphasize the Ca2+-handling abnormalities in cardiomyocytes during the development of cardiac dysfunction in heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eisner DA, Caldwell JL, Kistamás K, Trafford AW. Calcium and excitation-contraction coupling in the heart. Circ Res. 2017;121:181–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sternbach G. Sydney ringer: water supplied by the New River water company. J Emerg Med. 1988;6:71–4.

    Article  CAS  PubMed  Google Scholar 

  3. Dhalla NS, Ziegelhoffer A, Harrow JA. Regulatory role of membrane systems in heart function. Can J Physiol Pharmacol. 1977;55:1211–34.

    Article  CAS  PubMed  Google Scholar 

  4. Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE. Calcium movements in relation to heart function. Basic Res Cardiol. 1982;77:117–39.

    Article  CAS  PubMed  Google Scholar 

  5. Dhalla NS, Saini HK, Tappia PS, Sethi R, Mengi SA, Gupta SK. Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease. J Cardiovasc Med. 2007;8:238–50.

    Article  Google Scholar 

  6. Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000;80:853–924.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng H, Lederer WJ. Calcium sparks. Physiol Rev. 2008;88:1491–545.

    Article  CAS  PubMed  Google Scholar 

  8. Dulhunty AF. Excitation-contraction coupling from the 1950s into the new millennium. Clin Exp Pharmacol Physiol. 2006;33:763–72.

    Article  CAS  PubMed  Google Scholar 

  9. Eisner D. Calcium in the heart: from physiology to disease. Exp Physiol. 2014;99:1273–82.

    Article  CAS  PubMed  Google Scholar 

  10. Santulli G, Lewis DR, Marks AR. Physiology and pathophysiology of excitation contraction coupling: the functional role of ryanodine receptor. J Muscle Res Cell Motil. 2017;38:37–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Santulli G, Marks AR. Essential roles of intracellular calcium release channels in muscle, brain, metabolism, and aging. Curr Mol Pharmacol. 2015;8:206–22.

    Article  CAS  PubMed  Google Scholar 

  12. Cartwright EJ, Schuh K, Neyses L. Calcium transport in cardiovascular health and disease –the sarcolemmal calcium pump enters the stage. J Mol Cell Cardiol. 2005;39:403–6.

    Article  CAS  PubMed  Google Scholar 

  13. Eisner DA, Trafford AW. What is the purpose of the large sarcolemmal calcium flux on each heartbeat? Am J Physiol Heart Circ Physiol. 2009;297:H493–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Despa S, Bers DM. Na+ transport in the normal and failing heart - remember the balance. J Mol Cell Cardiol. 2013;61:2–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Benitah JP, Alvarez JL, Gómez AM. L-type Ca2+ current in ventricular cardiomyocytes. J Mol Cell Cardiol. 2010;48:26–36.

    Article  CAS  PubMed  Google Scholar 

  16. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57:411–25.

    Article  CAS  PubMed  Google Scholar 

  17. Colecraft HM, Alseikhan B, Takahashi SX, Chaudhuri D, Mittman S, Yegnasubramanian V, et al. Novel functional properties of Ca2+ channel beta subunits revealed by their expression in adult rat heart cells. J Physiol. 2002;541:435–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Halling DB, Aracena-Parks P, Hamilton SL. Regulation of voltage-gated Ca2+ channels by calmodulin. Sci STKE. 2006 Jan 17;2006(318):er1.

    PubMed  Google Scholar 

  19. Davare MA, Avdonin V, Hall DD, Peden EM, Burette A, Weinberg RJ, et al. A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science. 2001;293:98–101.

    Article  CAS  PubMed  Google Scholar 

  20. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119:19–31.

    Article  CAS  PubMed  Google Scholar 

  21. Hockerman GH, Peterson BZ, Johnson BD, Catterall WA. Molecular determinants of drug binding and action on L-type calcium channels. Annu Rev Pharmacol Toxicol. 1997;37:361–96.

    Article  CAS  PubMed  Google Scholar 

  22. Parekh AB, Putney JW Jr. Store-operated calcium channels. Physiol Rev. 2005;85:757–810.

    Article  CAS  PubMed  Google Scholar 

  23. Montell C, Birnbaumer L, Flockerzi V. The TRP channels, a remarkably functional family. Cell. 2002;108:595–8.

    Article  CAS  PubMed  Google Scholar 

  24. Parekh AB, Penner R. Depletion-activated calcium current is inhibited by protein kinase in RBL-2H3 cells. Proc Natl Acad Sci. 1995;USA.92:7907–11.

    Article  Google Scholar 

  25. Evans NE, Forth MK, Simpson AK, Mason MJ. Inhibition by calyculin a and okadaic acid of the Ca2+ release-activated Ca2+ entry pathway in rat basophilic leukemia cells: evidence for regulation by type 1/2A serine/threonine phosphatase activity. Biochim Biophys Acta. 2005;1718:32–43.

    Article  CAS  PubMed  Google Scholar 

  26. Schach C, Xu M, Platoshyn O, Keller SH, Yuan JX. Thiol oxidation causes pulmonary vasodilation by activating K+ channels and inhibiting store-operated Ca2+ channels. Am J Physiol Lung Cell Mol Physiol. 2007;292:L685–98.

    Article  CAS  PubMed  Google Scholar 

  27. Thompson M, White T, Chini EN. Modulation of store-operated Ca2+ entry by cyclic- ADP-ribose. Braz J Med Biol Res. 2006;39:739–48.

    Article  CAS  PubMed  Google Scholar 

  28. Denys A, Aires V, Hichami A, Khan NA. Thapsigargin-stimulated MAP kinase phosphorylation via CRAC channels and PLD activation: inhibitory action of docosahexaenoic acid. FEBS Lett. 2004;564:177–82.

    Article  CAS  PubMed  Google Scholar 

  29. Machaca K. Ca2+-calmodulin-dependent protein kinase II potentiates store-operated Ca2+ current. J Biol Chem. 2003;278:33730–7.

    Article  CAS  PubMed  Google Scholar 

  30. Khoo C, Helm J, Choi HB, Kim SU, McLarnon JG. Inhibition of store-operated Ca2+ influx by acidic extracellular pH in cultured human microglia. Glia. 2001;36:22–30.

    Article  CAS  PubMed  Google Scholar 

  31. Tornquist K, Vainio PJ, Bjorklund S, Titievsky A, Dugue B, Tuominen RK. Hydrogen peroxide attenuates store-operated calcium entry and enhances calcium extrusion in thyroid FRTL-5 cells. Biochem J. 2000;351:47–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berra-Romani R, Mazzocco-Spezzia A, Pulina MV, Golovina VA. Ca2+ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture. Am J Physiol Cell Physiol. 2008;295:C779–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saini HK, Dhalla NS. Sarcolemmal cation channels and exchangers modify the increase in intracellular calcium in cardiomyocytes on inhibiting Na+-K+ ATPase. Am J Physiol Heart Circ Physiol. 2007;293:H169–81.

    Article  CAS  PubMed  Google Scholar 

  34. Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, et al. TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J. 2006;25:5305–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, et al. Transient receptor potential channels in cardiovascular function and disease. Circ Res. 2006;99:119–31.

    Article  CAS  PubMed  Google Scholar 

  36. Watanabe H, Murakami M, Ohba T, Takahashi Y, Ito H. TRP channel and cardiovascular disease. Pharmacol Ther. 2008;118:337–51.

    Article  CAS  PubMed  Google Scholar 

  37. Bootman MD, Rietdorf K. Tissue specificity: store-operated Ca2+ entry in cardiac myocytes. Exp Med Biol. 2017;993:363–87.

    Article  CAS  Google Scholar 

  38. Ruhle B, Trebak M. Emerging roles for native ORAI Ca2+ channels in cardiovascular disease. Curr Top Membr. 2013;71:209–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bhullar SK, Shah AK, Dhalla NS. Store-operated calcium channels: potential target for the therapy of hypertension. Rev Cardiovasc Med. 2019;20:139–51.

    Article  PubMed  Google Scholar 

  40. Zhang B, Jiang J, Yue Z, Liu S, Ma Y, Yu N, et al. Store-operated Ca2+ entry (SOCE) contributes to angiotensin II-induced cardiac fibrosis in cardiac fibroblasts. J Pharmacol Sci. 2016;132:171–80.

    Article  CAS  PubMed  Google Scholar 

  41. Kecskés M, Jacobs G, Kerselaers S, Syam N, Menigoz A, Vangheluwe P, et al. The Ca2+−activated cation channel TRPM4 is a negative regulator of angiotensin II-induced cardiac hypertrophy. Basic Res Cardiol. 2015;110:43.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ji Y, Guo X, Zhang Z, Huang Z, Zhu J, Chen QH, et al. CaMKIIδ meditates phenylephrine induced cardiomyocyte hypertrophy through store-operated Ca2+ entry. Cardiovasc Pathol. 2017;27:9–17.

    Article  CAS  PubMed  Google Scholar 

  43. Domínguez-Rodríguez A, Ruiz-Hurtado G, Sabourin J, Gómez AM, Alvarez JL, Benitah JP. Proarrhythmic effect of sustained EPAC activation on TRPC3/4 in rat ventricular cardiomyocytes. J Mol Cell Cardiol. 2015;87:74–8.

    Article  PubMed  Google Scholar 

  44. Ohba T, Watanabe H, Murakami M, Takahashi Y, Iino K, Kuromitsu S, et al. Upregulation of TRPC1 in the development of cardiac hypertrophy. J Mol Cell Cardiol. 2007;42:498–507.

    Article  CAS  PubMed  Google Scholar 

  45. Sabourin J, Bartoli F, Antigny F, Gomez AM, Benitah JP. Transient receptor potential canonical (TRPC)/Orai1-dependent store-operated Ca2+ channels: new targets of aldosterone in cardiomyocytes. J Biol Chem. 2016;291:13394–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ottolia M, Torres N, Bridge JH, Philipson KD, Goldhaber JI. Na/ca exchange and contraction of the heart. J Mol Cell Cardiol. 2013;61:28–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Aronsen JM, Swift F, Sejersted OM. Cardiac sodium transport and excitation contraction coupling. J Mol Cell Cardiol. 2013;61:11–9.

    Article  CAS  PubMed  Google Scholar 

  48. Shattock MJ, Ottolia M, Bers DM, Blaustein MP, Boguslavskyi A, Bossuyt J, et al. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol. 2015;593:1361–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hilgemann DW, Yaradanakul A, Wang Y, Fuster D. Molecular control of cardiac sodium homeostasis in health and disease. J Cardiovasc Electrophysiol. 2006;17:S47–56.

    Article  PubMed  Google Scholar 

  50. Cheung JY, Rothblum LI, Moorman JR, Tucker AL, Song J, Ahlers BA, et al. Regulation of cardiac Na+/Ca2+ exchanger by phospholemman. Ann N Y Acad Sci. 2007;1099:119–34.

    Article  CAS  PubMed  Google Scholar 

  51. Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K. The myocardial Na+-H+ exchange: structure, regulation, and its role in heart disease. Circ Res. 1999;85:777–86.

    Article  CAS  PubMed  Google Scholar 

  52. Saini HK, Tripathi ON, Zhang S, Elimban V, Dhalla NS. Involvement of Na+/Ca2+ exchanger in catecholamine-induced increase in intracellular calcium in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2006;290:H373–80.

    Article  CAS  PubMed  Google Scholar 

  53. Wei SK, Ruknudin AM, Shou M, McCurley JM, Hanlon SU, Elgin E, et al. Muscarinic modulation of the sodium-calcium exchanger in heart failure. Circulation. 2007;115:1225–33.

    Article  CAS  PubMed  Google Scholar 

  54. Shao Q, Ren B, Elimban V, Tappia PS, Takeda N, Dhalla NS. Modification of sarcolemmal Na+-K+-ATPase and Na+/Ca2+ exchanger expression in heart failure by blockade of renin-angiotensin system. Am J Physiol Heart Circ Physiol. 2005;288:H2637–46.

    Article  CAS  PubMed  Google Scholar 

  55. Iwamoto T. Forefront of Na+/Ca2+ exchanger studies: molecular pharmacology of Na+/Ca2+ exchange inhibitors. J Pharmacol Sci. 2004;96:27–32.

    Article  CAS  PubMed  Google Scholar 

  56. Fong SPT, Agrawal S, Gong M, Zhao J. Modulated calcium homeostasis and release events under atrial fibrillation and its risk factors: a meta-analysis. Front Cardiovasc Med. 2021;8:662914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Christ T, Kovács PP, Acsai K, Knaut M, Eschenhagen T, et al. Block of Na+/Ca2+ exchanger by SEA0400 in human right atrial preparations from patients in sinus rhythm and in atrial fibrillation. Eur J Pharmacol. 2016;788:286–93.

    Article  CAS  PubMed  Google Scholar 

  58. Iwamoto T, Kita S, Uehara A, Imanaga I, Matsuda T, Baba A, et al. Molecular determinants of Na+/Ca2+ exchange (NCX1) inhibition by SEA0400. J Biol Chem. 2004;279:7544–53.

    Article  CAS  PubMed  Google Scholar 

  59. Namekata I, Nakamura H, Shimada H, Tanaka H, Shigenobu K. Cardioprotection without cardiosuppression by SEA0400, a novel inhibitor of Na+-Ca2+ exchanger, during ischemia and reperfusion in Guinea-pig myocardium. Life Sci. 2005;77:312–24.

    Article  CAS  PubMed  Google Scholar 

  60. Fliegel L. Regulation of myocardial Na+/H+ exchanger activity. Basic Res Cardiol. 2001;96:301–5.

    Article  CAS  PubMed  Google Scholar 

  61. Odunewu-Aderibigbe A, Fliegel L. The Na+/H+ exchanger and pH regulation in the heart. IUBMB Life. 2014;66:679–85.

    Article  CAS  PubMed  Google Scholar 

  62. Slepkov ER, Rainey JK, Sykes BD, Fliegel L. Structural and functional analysis of the Na+/H+ exchanger. Biochem J. 2007;401:623–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aharonovitz O, Zaun HC, Balla T, York JD, Orlowski J, Grinstein S. Intracellular pH regulation by Na+/H+ exchange requires phosphatidylinositol 4,5-bisphosphate. J Cell Biol. 2000;150:213–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zaun HC, Shrier A, Orlowski J. Calcineurin B homologous protein 3 promotes the biosynthetic maturation, cell surface stability, and optimal transport of the Na+/H+ exchanger NHE1 isoform. J Biol Chem. 2008;283:12456–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bertrand B, Wakabayashi S, Ikeda T, Pouyssegur J, Shigekawa M. The Na+/H+ exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. Identification and characterization of calmodulin-binding sites. J Biol Chem. 1994;269:13703–9.

    Article  CAS  PubMed  Google Scholar 

  66. Wakabayashi S, Bertrand B, Ikeda T, Pouyssegur J, Shigekawa M. Mutation of calmodulin-binding site renders the Na+/H+ exchanger (NHE1) highly H+-sensitive and Ca2+ regulation-defective. J Biol Chem. 1994;269:13710–5.

    Article  CAS  PubMed  Google Scholar 

  67. Li X, Alvarez B, Casey JR, Reithmeier RA, Fliegel L. Carbonic anhydrase II binds to and enhances activity of the Na+/H+ exchanger. J Biol Chem. 2002;277:36085–91.

    Article  CAS  PubMed  Google Scholar 

  68. Malo ME, Fliegel L. Physiological role and regulation of the Na+/H+ exchanger. Can J Physiol Pharmacol. 2006;84:1081–95.

    Article  CAS  PubMed  Google Scholar 

  69. Sardet C, Counillon L, Franchi A, Pouyssegur J. Growth factors induce phosphorylation of the Na+/H+ antiporter, glycoprotein of 110 kD. Science. 1990;247:723–6.

    Article  CAS  PubMed  Google Scholar 

  70. Phan VN, Kusuhara M, Lucchesi PA, Berk BC. A 90-kD Na+-H+ exchanger kinase has increased activity in spontaneously hypertensive rat vascular smooth muscle cells. Hypertension. 1997;29:1265–7122.

    Article  CAS  PubMed  Google Scholar 

  71. Takahashi E, Abe J, Berk BC. Angiotensin II stimulates p90rsk in vascular smooth muscle cells. A potential Na+-H+ exchanger kinase. Circ Res. 1997;81:268–73.

    Article  CAS  PubMed  Google Scholar 

  72. Scholz W, Albus U, Counillon L, Gogelein H, Lang HJ, Linz W, et al. Protective effects of HOE642, a selective sodium-hydrogen exchange subtype 1 inhibitor, on cardiac ischaemia and reperfusion. Cardiovasc Res. 1995;29:260–8.

    Article  CAS  PubMed  Google Scholar 

  73. Chaitman BR. A review of the GUARDIAN trial results: clinical implications and the significance of elevated perioperative CK-MB on 6-month survival. J Card Surg. 2003;18(Suppl 1):13–20.

    Article  PubMed  Google Scholar 

  74. Mentzer J, Lasley RD, Jessel A, Karmazyn M. Intracellular sodium hydrogen exchange inhibition and clinical myocardial protection. Ann Thorac Surg. 2003;75:S700–8.

    Article  PubMed  Google Scholar 

  75. Gazmuri RJ, Radhakrishnan J, Ayoub IM. Sodium-hydrogen exchanger isoform-1 inhibition: A promising pharmacological intervention for resuscitation from cardiac arrest. Molecules. 24 pii: E1765, 2019.

    Google Scholar 

  76. Fliegel L. Molecular biology of the myocardial Na+/H+ exchanger. J Mol Cell Cardiol. 2008;44:228–37.

    Article  CAS  PubMed  Google Scholar 

  77. Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ Res. 2008;103:891–9.

    Article  CAS  PubMed  Google Scholar 

  78. Yeves AM, Ennis IL. Na+/H+ exchanger and cardiac hypertrophy. Hipertens. Riesgo. Vasc. pii: S1889–183730055-8, 2019.

    Google Scholar 

  79. Skou JC. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957;23:394–401.

    Article  CAS  PubMed  Google Scholar 

  80. Liu CC, Fry NA, Hamilton EJ, Chia KK, Garcia A, et al. Redox-dependent regulation of the Na+-K+ pump: new twists to an old target for treatment of heart failure. J Mol Cell Cardiol. 2013;61:94–101.

    Article  CAS  PubMed  Google Scholar 

  81. Kryvenko V, Vagin O, Dada LA, Sznajder JI, Vadász I. Maturation of the Na,K-ATPase in the endoplasmic reticulum in health and disease. J Membr Biol. 2021;10:1–11.

    Google Scholar 

  82. Takeyasu K, Okamura H, Yasuhara JC, Ogita Y, Yoshimura SH. P-type ATPase diversity and evolution: the origins of ouabain sensitivity and subunit assembly. Cell Mol Biol. 2001;47:325–33.

    CAS  PubMed  Google Scholar 

  83. Blanco G, Mercer RW. Isozymes of the Na+-K+-ATPase: heterogeneity in structure, diversity in function. Am J Phys. 1998;275:F633–50.

    CAS  Google Scholar 

  84. Sweadner KJ, Herrera VL, Amato S, Moellmann A, Gibbons DK, Repke KR. Immunologic identification of Na+-K+-ATPase isoforms in myocardium. Isoform change in deoxycorticosterone acetate-salt hypertension. Circ Res. 1994;74:669–78.

    Article  CAS  PubMed  Google Scholar 

  85. Karmazyn M, Tuana BS, Dhalla NS. Effect of prostaglandins on rat heart sarcolemmal ATPases. Can J Physiol Pharmacol. 1981;59:1122–7.

    Article  CAS  PubMed  Google Scholar 

  86. Pierce GN, Ganguly PK, Dzurba A, Dhalla NS. Modification of the function of cardiac subcellular organelles by insulin. Adv Myocardiol. 1985;6:113–25.

    CAS  PubMed  Google Scholar 

  87. Moffat MP, Dhalla NS. Heart sarcolemmal ATPase and calcium binding activities in rats fed a high cholesterol diet. Can J Cardiol. 1985;1:194–200.

    CAS  PubMed  Google Scholar 

  88. Gupta MP, Makino N, Takeo S, Kaneko M, Dhalla NS. Cardiac sarcolemma as a possible site of action of caffeine in rat heart. J Pharmacol Exp Ther. 1990;255:1188–94.

    CAS  PubMed  Google Scholar 

  89. Tian J, Xie ZJ. The Na-K-ATPase and calcium-signaling microdomains. Physiology. 2008;23:205–11.

    Article  CAS  PubMed  Google Scholar 

  90. Netticadan T, Kato K, Tappia P, Elimban V, Dhalla NS. Phosphorylation of cardiac Na+-K+ ATPase by Ca2+/calmodulin dependent protein kinase. Biochem Biophys Res Commun. 1997;238:544–8.

    Article  CAS  PubMed  Google Scholar 

  91. Dixon IM, Hata T, Dhalla NS. Sarcolemmal calcium transport in congestive heart failure due to myocardial infarction in rats. Am J Physiol Heart Circ Physiol. 1992;262:H1387–94.

    Article  CAS  Google Scholar 

  92. Guo X, Wang J, Elimban V, Dhalla NS. Both enalapril and losartan attenuate sarcolemmal Na+-K+-ATPase remodeling in failing rat heart due to myocardial infarction. Can J Physiol Pharmacol. 2008;86:139–47.

    Article  CAS  PubMed  Google Scholar 

  93. Dhalla NS, Panagia V, Singal PK, Makino N, Dixon IM, Eyolfson DA. Alterations in heart membrane calcium transport during the development of ischemia-reperfusion injury. J Mol Cell Cardiol. 1988;20(Suppl 2):3–13.

    Article  CAS  PubMed  Google Scholar 

  94. Ostadal P, Elmoselhi AB, Zdobnicka I, Lukas A, Chapman D, Dhalla NS. Ischemia- reperfusion alters gene expression of Na+-K+-ATPase isoforms in rat heart. Biochem Biophys Res Commun. 2003;306:457–62.

    Article  CAS  PubMed  Google Scholar 

  95. Ostadal P, Elmoselhi AB, Zdobnicka I, Lukas A, Elimban V, Dhalla NS. Role of oxidative stress in ischemia-reperfusion-induced changes in Na+-K+-ATPase isoform expression in rat heart. Antioxid Redox Signal. 2004;6:914–23.

    CAS  PubMed  Google Scholar 

  96. Elmoselhi AB, Lukas A, Ostadal P, Dhalla NS. Preconditioning attenuates ischemia-reperfusion-induced remodeling of Na+-K+-ATPase in hearts. Am J Physiol Heart Circ Physiol. 2003;285:H1055–63.

    Article  CAS  PubMed  Google Scholar 

  97. Shao Q, Matsubara T, Bhatt SK, Dhalla NS. Inhibition of cardiac sarcolemma Na+-K+- ATPase by oxyradical generating systems. Mol Cell Biochem. 1995;147:139–44.

    Article  CAS  PubMed  Google Scholar 

  98. Srikanthan K, Shapiro JI, Sodhi K. The role of Na/K-ATPase signaling in oxidative stress related to obesity and cardiovascular disease. Molecules. 21. pii: E1172, 2016.

    Google Scholar 

  99. Botelho AFM, Pierezan F, Soto-Blanco B, Melo MM. A review of cardiac glycosides: structure, toxicokinetics, clinical signs, diagnosis and antineoplastic potential. Toxicon. 2019;158:63–8.

    Article  CAS  PubMed  Google Scholar 

  100. Wang HY, O’Doherty GA. Modulators of Na/K-ATPase: a patent review. Expert Opin Ther Pat. 2012;22:587–605.

    Article  CAS  PubMed  Google Scholar 

  101. Crambert G, Hasler U, Beggah AT, Yu C, Modyanov NN, Horisberger JD, et al. Transport and pharmacological properties of nine different human Na, K-ATPase isozymes. J Biol Chem. 2000;275:1976–86.

    Article  CAS  PubMed  Google Scholar 

  102. Hilgemann DW, Ball R. Regulation of cardiac Na+, Ca2+ exchange and KATP potassium channels by PIP2. Science. 1996;273:956–9.

    Article  CAS  PubMed  Google Scholar 

  103. Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am J Cardiovasc Drugs. 2007;7:173–89.

    Article  CAS  PubMed  Google Scholar 

  104. Hamlyn JM, Ringel R, Schaeffer J, Levinson PD, Hamilton BP, Kowarski AA, et al. A circulating inhibitor of (Na+-K+) ATPase associated with essential hypertension. Nature. 1982;300:650–2.

    Article  CAS  PubMed  Google Scholar 

  105. Hamlyn JM, Lu ZR, Manunta P, Ludens JH, Kimura K, Shah JR, et al. Observations on the nature, biosynthesis, secretion and significance of endogenous ouabain. Clin Exp Hypertens. 1998;20:523–33.

    Article  CAS  PubMed  Google Scholar 

  106. Qazzaz HM, Cao Z, Bolanowski DD, Clark BJ, Valdes R Jr. De novo biosynthesis and radiolabeling of mammalian digitalis-like factors. Clin Chem. 2004;50:612–20.

    Article  CAS  PubMed  Google Scholar 

  107. Golfman L, Dixon IM, Takeda N, Lukas A, Dakshinamurti K, Dhalla NS. Cardiac sarcolemmal Na+-Ca2+ exchange and Na+-K+ ATPase activities and gene expression in alloxan-induced diabetes in rats. Mol Cell Biochem. 1998;188:91–101.

    Article  CAS  PubMed  Google Scholar 

  108. Kato K, Chapman DC, Rupp H, Lukas A, Dhalla NS. Alterations of heart function and Na+-K+-ATPase activity by etomoxir in diabetic rats. J Appl Physiol. 1999;86:812–8.

    Article  CAS  PubMed  Google Scholar 

  109. Kato K, Lukas A, Chapman DC, Dhalla NS. Changes in the expression of cardiac Na+-K+ ATPase subunits in the UM-X7.1 cardiomyopathic hamster. Life Sci. 2000;67:1175–83.

    Article  CAS  PubMed  Google Scholar 

  110. Kato K, Lukas A, Chapman DC, Rupp H, Dhalla NS. Differential effects of etomoxir treatment on cardiac Na+-K+ ATPase subunits in diabetic rats. Mol Cell Biochem. 2002;232:57–62.

    Article  CAS  PubMed  Google Scholar 

  111. Axelsen KB, Palmgren MG. Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol. 1998;46:84–101.

    Article  CAS  PubMed  Google Scholar 

  112. Strehler EE, Filoteo AG, Penniston JT, Caride AJ. Plasma-membrane Ca2+ pumps: structural diversity as the basis for functional versatility. Biochem Soc Trans. 2007;35:919–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Strehler EE, Caride AJ, Filoteo AG, Xiong Y, Penniston JT, Enyedi A. Plasma membrane Ca2+ ATPases as dynamic regulators of cellular calcium handling. Ann N Y Acad Sci. 2007;1099:226–36.

    Article  CAS  PubMed  Google Scholar 

  114. Carafoli E, Stauffer T. The plasma membrane calcium pump: functional domains, regulation of the activity, and tissue specificity of isoform expression. J Neurobiol. 1994;25:312–24.

    Article  CAS  PubMed  Google Scholar 

  115. Okunade GW, Miller ML, Pyne GJ, Sutliff RL, O'Connor KT, Neumann JC, et al. Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem. 2004;279:33742–50.

    Article  CAS  PubMed  Google Scholar 

  116. Gros R, Afroze T, You XM, Kabir G, Van WR, Kalair W, et al. Plasma membrane calcium ATPase overexpression in arterial smooth muscle increases vasomotor responsiveness and blood pressure. Circ Res. 2003;93:614–21.

    Article  CAS  PubMed  Google Scholar 

  117. Piuhola J, Hammes A, Schuh K, Neyses L, Vuolteenaho O, Ruskoaho H. Overexpression of sarcolemmal calcium pump attenuates induction of cardiac gene expression in response to ET-1. Am J Physiol Regul Integr Comp Physiol. 2001;281:R699–705.

    Article  CAS  PubMed  Google Scholar 

  118. Oceandy D, Buch MH, Cartwright EJ, Neyses L. The emergence of plasma membrane calcium pump as a novel therapeutic target for heart disease. Mini Rev Med Chem. 2006;6:583–38.

    Article  CAS  PubMed  Google Scholar 

  119. Lakatta EG, Vinogradova TM, Maltsev VA. The missing link in the mystery of normal automaticity of cardiac pacemaker cells. Ann N Y Acad Sci. 2008;1123:41–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D, Elimban V, Dent MR, Tappia PS. Subcellular remodelling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res. 2008;81:429–38.

    Article  PubMed  Google Scholar 

  121. Undrovinas A, Maltsev VA. Late sodium current is a new therapeutic target to improve contractility and rhythm in failing heart. Cardiovasc Hematol Agents Med Chem. 2008;6:348–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sanguinetti MC, Bennett PB. Antiarrhythmic drug target choices and screening. Circ Res. 2003;93:491–9.

    Article  CAS  PubMed  Google Scholar 

  123. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13:486–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The infrastructural support for this article was provided by the St. Boniface Hospital Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naranjan S. Dhalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tappia, P.S., Bhullar, S.K., Shah, A.K., Dhalla, N.S. (2023). Implications of Sarcolemmal Ca2+-Handling Proteins in Heart Function in Health and Disease. In: Tripathi, O.N., Quinn, T.A., Ravens, U. (eds) Heart Rate and Rhythm. Springer, Cham. https://doi.org/10.1007/978-3-031-33588-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33588-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33587-7

  • Online ISBN: 978-3-031-33588-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics