Skip to main content

Shorter and Faster Identity-Based Signatures with Tight Security in the (Q)ROM from Lattices

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13905))

Included in the following conference series:

  • 674 Accesses

Abstract

We provide identity-based signature (IBS) schemes with tight security against adaptive adversaries, in the (classical or quantum) random oracle model (ROM or QROM), in both unstructured and structured lattices, based on the SIS or RSIS assumption. These signatures are short (of size independent of the message length). Our schemes build upon a work from Pan and Wagner (PQCrypto’21) and improve on it in several ways. First, we prove their transformation from non-adaptive to adaptive IBS in the QROM. Then, we simplify the parameters used and give concrete values. Finally, we simplify the signature scheme by using a non-homogeneous relation, which helps us reduce the size of the signature and get rid of one costly trapdoor delegation. On the whole, we get better security bounds, shorter signatures and faster algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Full version at [27].

  2. 2.

    The full version contains a proof of this transformation in the strong security setting.

  3. 3.

    More details in full version.

References

  1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: 28th Annual ACM Symposium on Theory of Computing, Philadephia, PA, USA, pp. 99–108. ACM Press, 22–24 May 1996. https://doi.org/10.1145/237814.237838

  2. Avanzi, R., et al.: CRYSTALS-Kyber (version 3.02) - submission to round 3 of the NIST post-quantum project. Specification document (update from August 2021), 04 August 2021. https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf

  3. Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296, 625–635 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_17

    Chapter  Google Scholar 

  5. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

    Chapter  MATH  Google Scholar 

  6. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  7. Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices and smaller hash-and-sign signatures. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 3–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_1

    Chapter  Google Scholar 

  8. Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_10

    Chapter  Google Scholar 

  9. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 335–352. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_19

    Chapter  MATH  Google Scholar 

  10. Ducas, L.: GitHub repository pq-crystals/security-estimates. https://github.com/pq-crystals/security-estimates. Accessed 1 Jan 2023

  11. Ducas, L., et al.: CRYSTALS-Dilithium - algorithm specifications and supporting documentation (version 3.1). Specification document (update from February 2021), 08 February 2021. https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf

  12. Genise, N., Micciancio, D., Peikert, C., Walter, M.: Improved discrete Gaussian and subGaussian analysis for lattice cryptography. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 623–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_21

    Chapter  MATH  Google Scholar 

  13. Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget toolkit: subGaussian sampling and more. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 655–684. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_23

    Chapter  Google Scholar 

  14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. Cryptology ePrint Archive, Report 2007/432 (2007). https://eprint.iacr.org/2007/432

  15. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_34

    Chapter  Google Scholar 

  16. Grilo, A.B., Hövelmanns, K., Hülsing, A., Majenz, C.: Tight adaptive reprogramming in the QROM. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 637–667. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_22

    Chapter  MATH  Google Scholar 

  17. Kiltz, E., Neven, G.: Identity-based signatures. In: Joye, M., Neven, G. (eds.) Identity-Based Cryptography, Cryptology and Information Security Series, vol. 2, pp. 31–44. IOS Press (2009). https://doi.org/10.3233/978-1-58603-947-9-31

  18. Krawczyk, H., Rabin, T.: Chameleon signatures. In: ISOC Network and Distributed System Security Symposium - NDSS 2000, San Diego, CA, USA. The Internet Society, 2–4 February 2000

    Google Scholar 

  19. Lee, Y., Park, J.H., Lee, K., Lee, D.H.: Tight security for the generic construction of identity-based signature (in the multi-instance setting). Theor. Comput. Sci. 847, 122–133 (2020). https://doi.org/10.1016/j.tcs.2020.09.044

    Article  MathSciNet  MATH  Google Scholar 

  20. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  21. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. In: 43rd Annual Symposium on Foundations of Computer Science, Vancouver, BC, Canada, pp. 356–365. IEEE Computer Society Press, 16–19 November 2002. https://doi.org/10.1109/SFCS.2002.1181960

  22. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  23. Pan, J., Wagner, B.: Short identity-based signatures with tight security from lattices. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021. LNCS, vol. 12841, pp. 360–379. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_19

    Chapter  Google Scholar 

  24. Pan, J., Wagner, B.: Lattice-based signatures with tight adaptive corruptions and more. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022. LNSC, vol. 13178, pp. 347–378. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97131-1_12

    Chapter  Google Scholar 

  25. Peikert, C.: A decade of lattice cryptography. Cryptology ePrint Archive, Report 2015/939 (2015). https://eprint.iacr.org/2015/939

  26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory of Computing, Baltimore, MA, USA, pp. 84–93. ACM Press, 22–24 May 2005. https://doi.org/10.1145/1060590.1060603

  27. Sageloli, E., Pébereau, P., Méaux, P., Chevalier, C.: Shorter and faster identity-based signatures with tight security in the (q)rom from lattices. Cryptology ePrint Archive, Paper 2023/489 (2023). https://eprint.iacr.org/2023/489

  28. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  29. Wang, Y., Wang, B., Lai, Q., Zhan, Y.: Identity-based matchmaking encryption with stronger security and instantiation on lattices. Cryptology ePrint Archive, Paper 2022/1718 (2022). https://eprint.iacr.org/2022/1718

  30. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum Inf. Comput. 15(7 &8), 557–567 (2015). https://doi.org/10.26421/QIC15.7-8-2

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the French ANR projects CryptiQ (ANR-18- CE39-0015) and SecNISQ (ANR-21-CE47-0014). Pierrick Méaux was supported by the ERC Advanced Grant no. 787390.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Sageloli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sageloli, É., Pébereau, P., Méaux, P., Chevalier, C. (2023). Shorter and Faster Identity-Based Signatures with Tight Security in the (Q)ROM from Lattices. In: Tibouchi, M., Wang, X. (eds) Applied Cryptography and Network Security. ACNS 2023. Lecture Notes in Computer Science, vol 13905. Springer, Cham. https://doi.org/10.1007/978-3-031-33488-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33488-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33487-0

  • Online ISBN: 978-3-031-33488-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics