Skip to main content

Biobased Fiber Reinforced Composite Materials for Construction 3D-Printing

Material Selection Based on Strength, Embodied Environmental Impact, and Cost

  • Conference paper
  • First Online:
Bio-Based Building Materials (ICBBM 2023)

Part of the book series: RILEM Bookseries ((RILEM,volume 45))

Included in the following conference series:

  • 973 Accesses

Abstract

Construction 3D-printing (C3DP) provides new opportunities to improve the mechanical properties of biobased fiber-reinforced construction materials. The extrusion process used in many C3DP systems has been shown to induce fiber alignment along the printing path, which can improve the strength of composites in certain loading directions. Several studies have demonstrated this with synthetic short fiber-reinforced C3DP materials; however, very few studies have considered the addition of biobased fibers in extrusion-based fabrication processes. Biobased fibers are known to have lower environmental impacts and cost when compared to synthetic fibers, but their tensile strength tends to be lower. Thus, the use of C3DP with biobased fibers is a prospective solution to improve the mechanical properties of these sustainable construction materials. This review evaluates the performance of 3D-printed fiber-reinforced construction materials in terms of strength, cost, and embodied environmental impact. Using a material selection process to compare between the selected properties, the most proficient biobased fiber mix designs for C3DP are then identified based on fiber type, fiber content, and binder type. By establishing a set of criteria for the performance of biobased fiber reinforced C3DP materials, future research can be compared to these results to work towards more sustainable, high-performance biomaterials for construction applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations Environment Programme. 2021 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector (2021)

    Google Scholar 

  2. Arehart, J.H., Hart, J., Pomponi, F., D’Amico, B.: Carbon sequestration and storage in the built environment. Sustain. Prod. Consum. 27 (2021). https://doi.org/10.1016/j.spc.2021.02.028

  3. Churkina, G., et al.: Buildings as a global carbon sink. Nat. Sustain. 3 (2020). https://doi.org/10.1038/s41893-019-0462-4

  4. Pittau, F., Krause, F., Lumia, G., Habert, G.: Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Build. Environ. 129 (2018)

    Google Scholar 

  5. Goswein, V., Arehart, J., Phan-huy, C., Pomponi, F., Habert, G.: Barriers and opportunities of fast-growing biobased material use in buildings. Build. Cities 3, 745–755 (2022)

    Article  Google Scholar 

  6. Ashby, M.F.: Materials and the environment: eco-informed material choice. Materials and the Environment: Eco-informed Material Choice(2021). https://doi.org/10.1016/B978-0-12-821521-0.01001-X

  7. Fan, M., Fu, F.: Introduction: a perspective - natural fibre composites in construction. In:Advanced High Strength Natural Fibre Composites in Construction (2016). https://doi.org/10.1016/B978-0-08-100411-1.00001-7

  8. Pandey, J.K., Ahn, S.H., Lee, C.S., Mohanty, A.K., Misra, M.: Recent advances in the application of natural fiber based composites. Macromol. Mater. Eng. 295 (2010). https://doi.org/10.1002/mame.201000095

  9. Fu, F., Lin, L., Xu, E.: Functional pretreatments of natural raw materials. In:Advanced High Strength Natural Fibre Composites in Construction (2017). https://doi.org/10.1016/B978-0-08-100411-1.00004-2

  10. Kabir, M.M., Wang, H., Lau, K.T., Cardona, F.: Effects of chemical treatments on hemp fibre structure. Appl. Surf. Sci. 276 (2013)

    Google Scholar 

  11. Fan, M., Weclawski, B.: Long natural fibre composites. In: Advanced High Strength Natural Fibre Composites in Construction (2017). https://doi.org/10.1016/B978-0-08-100411-1.00006-6

  12. Mechtcherine, V., et al.: Extrusion-based additive manufacturing with cement-based materials – Production steps, processes, and their underlying physics: a review. Cem. Concr. Res. 132 (2020). https://doi.org/10.1016/j.cemconres.2020.106037

  13. Ge, Z., et al.: Influence of an extrusion approach on the fiber orientation and mechanical properties of engineering cementitious composite. Constr. Build. Mater. 306, (2021)

    Google Scholar 

  14. Arunothayan, A.R., et al.: Fiber orientation effects on ultra-high performance concrete formed by 3D printing. Cem. Concr. Res. 143 (2021)

    Google Scholar 

  15. Zhang, H., Zhu, L., Zhang, F., Yang, M.: Effect of fiber content and alignment on the mechanical properties of 3D printing cementitious composites. Materials 14 (2021)

    Google Scholar 

  16. Ma, G., Li, Z., Wang, L., Wang, F., Sanjayan, J.: Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Constr. Build. Mater. 202 (2019)

    Google Scholar 

  17. Bradford, K.: Fiber-reinforced 3D-printed construction material properties. SMARTech - Georgia Tech Library [database] (2023). http://hdl.handle.net/1853/70329

  18. Khelifi, H., Lecompte, T., Perrot, A., Ausias, G.: Mechanical enhancement of cement-stabilized soil by flax fibre reinforcement and extrusion processing. Mater. Struct. 49(4), 1143–1156 (2015). https://doi.org/10.1617/s11527-015-0564-z

    Article  Google Scholar 

  19. Akbar, A., Liew, K.M.: Multicriteria performance evaluation of fiber-reinforced cement composites: an environmental perspective. Compos. B Eng. 218 (2021)

    Google Scholar 

  20. Ojo, E.B., et al.: Effects of fibre reinforcements on properties of extruded alkali activated earthen building materials. Constr. Build. Mater. 227 (2019)

    Google Scholar 

  21. Korniejenko, K., et al.: Mechanical properties of short fiber-reinforced geopolymers made by casted and 3D printing methods: a comparative study. Materials 13 (2020)

    Google Scholar 

  22. Stanislas, T.T., et al.: Effect of cellulose pulp fibres on the physical, mechanical, and thermal performance of extruded earth-based materials. J. Build. Eng. 39, 102259 (2021)

    Article  Google Scholar 

  23. Hambach, M., Volkmer, D.: Properties of 3D-printed fiber-reinforced Portland cement paste. Cem. Concr. Compos. 79 (2017)

    Google Scholar 

  24. Hambach, M., Möller, H., Neumann, T., Volkmer, D.: Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexural strength (> 100 MPa). Cem. Concr. Res. 89 (2016)

    Google Scholar 

  25. Nematollahi, B., et al.: Effect of polypropylene fibre addition on properties of geopolymers made by 3D printing for digital construction. Materials 11 (2018)

    Google Scholar 

  26. Ding, T., Xiao, J., Zou, S., Zhou, X.: Anisotropic behavior in bending of 3D printed concrete reinforced with fibers. Compos. Struct. 254 (2020)

    Google Scholar 

  27. Arunothayan, A.R., Nematollahi, B., Ranade, R., Bong, S.H., Sanjayan, J.: Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Constr. Build. Mater. 257 (2020)

    Google Scholar 

  28. Panda, B., Chandra Paul, S., Jen Tan, M.: Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater. Lett. 209 (2017)

    Google Scholar 

  29. Bos, F.P., Bosco, E., Salet, T.A.M.: Ductility of 3D printed concrete reinforced with short straight steel fibers. Virtual Phys. Prototyp. 14 (2019)

    Google Scholar 

  30. Sri Bhanupratap Rathod, R., Venkatarama Reddy, B.V.: Strength and stress–strain characteristics of fibre reinforced cement stabilised rammed earth. Mater. Struct./Materiaux Constr. 54 (2021)

    Google Scholar 

  31. Sinka, M., Spurina, E., Korjankins, A., Bajare, D.: Hempcrete – CO2 neutral wall solutions for 3D printing. Environmenal and Climate Technologies 26, 742–753 (2022)

    Article  Google Scholar 

  32. Nematollahi, B., Xia, M., Sanjayan, J., Vijay, P.: Effect of type of fiber on inter-layer bond and flexural strengths of extrusion-based 3D printed geopolymer. In: Materials Science Forum, vol. 939 (2018)

    Google Scholar 

  33. D’haese, R., et al.: Composite for additive manufacturing including flax by-products and quarry fines. In: 2nd EuroMaghrébine Conference of BioComposites (2018)

    Google Scholar 

  34. Savastano, H., Agopyan, V., Nolasco, A.M., Pimentel, L.: Plant fibre reinforced cement components for roofing. Constr. Build. Mater. 13 (1999)

    Google Scholar 

  35. Zhou, X., Ghaffar, S.H., Dong, W., Oladiran, O., Fan, M.: Fracture and impact properties of short discrete jute fibre-reinforced cementitious composites. Mater. Des. 49 (2013)

    Google Scholar 

  36. Silva, G., et al.: Eco-friendly additive construction: analysis of the printability of earthen-based matrices stabilized with potato starch gel and sisal fibers. Constr. Build. Mater. 347, 128556 (2022)

    Article  Google Scholar 

  37. Xiao, J., Zou, S., Ding, T., Duan, Z., Liu, Q.: Fiber-reinforced mortar with 100% recycled fine aggregates: a cleaner perspective on 3D printing. J. Clean. Prod. 319, 128720 (2021)

    Article  Google Scholar 

  38. Ye, J., Cui, C., Yu, J., Yu, K., Dong, F.: Effect of polyethylene fiber content on workability and mechanical-anisotropic properties of 3D printed ultra-high ductile concrete. Constr. Build. Mater. 281, 122586 (2021)

    Article  Google Scholar 

  39. Singh, A., Liu, Q., Xiao, J., Lyu, Q.: Mechanical and macrostructural properties of 3D printed concrete dosed with steel fibers under different loading direction. Constr. Build. Mater. 323 (2022)

    Google Scholar 

  40. Pham, L., Tran, P., Sanjayan, J.: Steel fibres reinforced 3D printed concrete: Influence of fibre sizes on mechanical performance. Constr. Build. Mater. 250 (2020)

    Google Scholar 

  41. Alqenaee, A., Memari, A.: Experimental study of 3D printable cob mixtures. Constr. Build. Mater. 324 (2022)

    Google Scholar 

  42. Baumann, H., Tillman, A.-M.: The hitch hiker’s guide to LCA. Studentlitteratur Lund (2004)

    Google Scholar 

  43. United States Environmental Protection Agency, O. of A. and R. & Office of Atmospheric Programs, C. C. D. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources (2014)

    Google Scholar 

  44. Institut Bauen und Umwelt e.V. (IBU). Environmental Product Declaration: Concrete admixtures – Hardening Accelerators European Federation of Concrete Admixtures Associations Ltd. (EFCA) (2015)

    Google Scholar 

  45. RSMeans Data Online. Preprint at (2011)

    Google Scholar 

  46. Luhar, S., et al.: Sustainable and renewable bio-based natural fibres and its application for 3d printed concrete: a review. Sustain. (Switz. ) 12 (2020) https://doi.org/10.3390/su122410485

  47. Technical Data Sheet - Basalt Chopped Strand

    Google Scholar 

  48. Fořt, J., Kočí, J., Černý, R.: Environmental efficiency aspects of basalt fibers reinforcement in concrete mixtures. Energies (Basel) 14 (2021)

    Google Scholar 

  49. Basalt Engineering. Chopped Fiber Bags 30 lbs. https://www.basalt-usa.com/product/chopped-fiber-bags-30-lbs/

  50. Man, Y., Han, Y., Li, J., Hong, M.: Review of energy consumption research for papermaking industry based on life cycle analysis. Chin. J. Chem. Eng. 27, 1543–1553 (2019)

    Article  Google Scholar 

  51. Wang, J., Shi, S.Q., Liang, K.: Comparative life-cycle assessment of sheet molding compound reinforced by natural fiber vs. glass fiber. J. Agric. Sci. Technol. B J. Agric. Sci. Technol. 3 (2013)

    Google Scholar 

  52. Lotfi, A., Li, H., Dao, D.V., Prusty, G.: Natural fiber–reinforced composites: a review on material, manufacturing, and machinability. J. Thermoplast. Compos. Mater. 34 (2021). https://doi.org/10.1177/0892705719844546

  53. Dittenber, D.B., Gangarao, H.V.S.: Critical review of recent publications on use of natural composites in infrastructure. Compos. Part A: Appl. Sci. Manuf. 43 (2012). https://doi.org/10.1016/j.compositesa.2011.11.019

  54. Arvidsson, R., Nguyen, D., Svanström, M.: Life cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processes. Environ. Sci. Technol. 49 (2015)

    Google Scholar 

  55. Safety Data Sheet - Sodium Carboxymethyl Cellulose 419273 (2021)

    Google Scholar 

  56. Carboxymethylcellulose Sodium USP MSDS (2015)

    Google Scholar 

  57. Broeren, M.L.M., et al.: Life cycle assessment of sisal fibre – exploring how local practices can influence environmental performance. J. Clean. Prod. 149 (2017)

    Google Scholar 

  58. Liu, S., Cao, W., Fang, J., Shang, S.: Variance analysis and performance evaluation of different crumb rubber modified (CRM) asphalt. Constr. Build. Mater. 23 (2009)

    Google Scholar 

  59. Farina, A., Zanetti, M.C., Santagata, E., Blengini, G.A.: Life cycle assessment applied to bituminous mixtures containing recycled materials: crumb rubber and reclaimed asphalt pavement. Resour. Conserv. Recycl. 117 (2017)

    Google Scholar 

  60. Xu, W., Becker, G.: Environmental impact assessment of wood pulp from a eucalyptus plantation in south china by using life-cycle analysis. For. Prod. J. 62 (2012). https://doi.org/10.13073/0015-7473-62.5.365

  61. Summerscales, J., Dissanayake, N.P.J.: Allocation in the life cycle assessment (LCA) of flax fibres for the reinforcement of composites. In: ICCM International Conferences on Composite Materials, vol. 2017-August (2017)

    Google Scholar 

  62. Dissanayake, N.P.J., Summerscales, J., Grove, S.M., Singh, M.M.: Energy use in the production of flax fiber for the reinforcement of composites. J. Natural Fibers 6 (2009)

    Google Scholar 

  63. González-García, S., Hospido, A., Feijoo, G., Moreira, M.T.: Life cycle assessment of raw materials for non-wood pulp mills: hemp and flax. Resour. Conserv. Recycl. 54 (2010)

    Google Scholar 

  64. Stevulova, N., Kidalova, L., Junak, J., Cigasova, J., Terpakova, E.: Effect of hemp shive sizes on mechanical properties of lightweight fibrous composites. In: Procedia Engineering, vol. 42 (2012)

    Google Scholar 

  65. Zampori, L., Dotelli, G., Vernelli, V.: Life cycle assessment of hemp cultivation and use of hemp-based thermal insulator materials in buildings. Environ. Sci. Technol. 47 (2013)

    Google Scholar 

  66. Kuruşcu, A.O., Girgin, Z.C.: Efficiency of structural materials in sustainable design. J. Civ. Eng. Archit. 8 (2014)

    Google Scholar 

  67. Thilakarathna, P.S.M., et al.: Embodied carbon analysis and benchmarking emissions of high and ultra-high strength concrete using machine learning algorithms. J. Clean. Prod. 262, 121281 (2020)

    Google Scholar 

  68. Ouellet-Plamondon, C., Habert, G.: Life cycle assessment (LCA) of alkali-activated cements and concretes. In: Handbook of Alkali-Activated Cements, Mortars and Concretes (2015). https://doi.org/10.1533/9781782422884.5.663

  69. Du, J., et al.: Utilization of off-specification fly ash in preparing ultra-high-performance concrete (UHPC): mixture design, characterization, and life-cycle assessment. Resour. Conserv. Recycl. 180, 106136 (2022)

    Google Scholar 

  70. Safety Data Sheet - Fly Ash Product (Class F Fly Ash) (2018)

    Google Scholar 

  71. ChemSrc. Hydroxypropyl Methyl Cellulose - CAS Number 9004-65-3

    Google Scholar 

  72. Laveglia, A., Sambataro, L., Ukrainczyk, N., de Belie, N., Koenders, E.: Hydrated lime life-cycle assessment: current and future scenarios in four EU countries. J Clean Prod 369, 133224 (2022)

    Article  Google Scholar 

  73. Maddalena, R., Roberts, J.J., Hamilton, A.: Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements. J. Clean. Prod. 186, 933–942 (2018)

    Article  Google Scholar 

  74. Safety Data Sheet - Calcium Hydroxide 31219 (2021)

    Google Scholar 

  75. Safety Data Sheet - Calcium Hydroxide 239232 (2021)

    Google Scholar 

  76. la Rosa1, A.D., Grammatikos, S.A.: Comparative life cycle assessment of cotton and other natural fibers for textile applications. Fibers 7 (2019)

    Google Scholar 

  77. National Center for Biotechnology Information. Compound Summary: Kaolin 56841936. National Library of Medicine (2023)

    Google Scholar 

  78. Lecompte, T., Perrot, A., Subrianto, A., le Duigou, A., Ausias, G.: A novel pull-out device used to study the influence of pressure during processing of cement-based material reinforced with coir. Constr. Build. Mater. 78, 224–233 (2015)

    Article  Google Scholar 

  79. Kaolinite Products – Sector EPD (2021)

    Google Scholar 

  80. U.S. average price of kaolin 2010–2021. https://www.statista.com/statistics/248194/average-price-of-kaolin/

  81. Mohan, M.K., et al.: Performance criteria, environmental impact and cost assessment for 3D printable concrete mixtures. Resour. Conserv. Recycl. 181, 106255 (2022)

    Article  Google Scholar 

  82. Bulk Material Density Table

    Google Scholar 

  83. Galan-Marin, C., Rivera-Gomez, C., Garcia-Martinez, A.: Use of natural-fiber bio-composites in construction versus traditional solutions: operational and embodied energy assessment. Materials 9 (2016)

    Google Scholar 

  84. Hammilll & Gillespie Specialty Clays and Minerals. HC - 11 Magnesium Aluminosilicate (2021)

    Google Scholar 

  85. GCP Technologies. EPD 402 - High-Range Water Reducer (2022)

    Google Scholar 

  86. EFCA. EPD - Concrete admixtures – Plasticizers and Superplasticizers (2021)

    Google Scholar 

  87. EMI Supply. Sikament 686 High Range Water Reducer and Superplasticizer Normal Slump 55 Gallon Drum. https://www.emisupply.com/

  88. OrganoMetallics. Polycarboxylate Ether. https://www.concreteplasticizer.com/

  89. Safety Data Sheet - MasterGlenium 3030 (2020)

    Google Scholar 

  90. Safety Data Sheet - MasterGlenium 7920 (2020)

    Google Scholar 

  91. Fisher Scientific. Potassium silicate, anhydrous. https://www.fishersci.com/

  92. ChemDirect. Potassium silicate. https://www.chemdirect.com/

  93. Turner, L.K., Collins, F.G.: Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 43, 125–130 (2013)

    Article  Google Scholar 

  94. Hapman. Bulk Material Density Guide. https://hapman.com/resources-knowledge/tools/bulk-density-guide/

  95. Bumanis, G., Vitola, L., Pundiene, I., Sinka, M., Bajare, D.: Gypsum, geopolymers, and starch-alternative binders for bio-based building materials: a review and life-cycle assessment. Sustain. (Switz.) 12 (2020)

    Google Scholar 

  96. Selina Wamucii. US Potato starch Prices. https://www.selinawamucii.com/insights/prices/united-states-of-america/potato-starch/

  97. Sika. Product data sheet - SikaTard®-440 (2018)

    Google Scholar 

  98. Safety Data Sheet - MasterSet R 122 (2020)

    Google Scholar 

  99. EFCA. EPD - Concrete admixtures – Retarders (2015)

    Google Scholar 

  100. Granite Construction Incorporated. Safety Data Sheet - Construction Sand (2015)

    Google Scholar 

  101. Marietta, M.: Safety Data Sheet - Natural Sand (2018)

    Google Scholar 

  102. Luck Stone Corporation. Safety Data Sheet - Natural Sand or Gravel (2015)

    Google Scholar 

  103. Elkem ASA Silicon Products. Product data sheet - Elkem Microsilica® 971 (2021)

    Google Scholar 

  104. An Industry Average Environmental Product Declaration for Slag Cement - EPD 245 (2020)

    Google Scholar 

  105. Thomas, J.J., Allen, A.J., Jennings, H.M.: Density and water content of nanoscale solid C-S–H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage. Cem. Concr. Res. 42, 377–383 (2012)

    Article  Google Scholar 

  106. Sun, X., Zhou, J., Wang, Q., Shi, J., Wang, H.: PVA fibre reinforced high-strength cementitious composite for 3D printing: mechanical properties and durability. Addit. Manuf. 49, 102500 (2022)

    Google Scholar 

  107. Salas, D.A., Ramirez, A.D., Ulloa, N., Baykara, H., Boero, A.J.: Life cycle assessment of geopolymer concrete. Constr. Build. Mater. 190, 170–177 (2018)

    Article  Google Scholar 

  108. An Eco-profile and Environmental Product Declaration of the European Chlor-Alkali Industry (2011)

    Google Scholar 

  109. Environmental Product Declaration - Sodium Hydroxide (2021)

    Google Scholar 

  110. Sigma-Aldrich. Safety Data Sheet - Sodium Hydroxide 221465 (2022)

    Google Scholar 

  111. Cole Parmer. Cole-Parmer® Sodium Hydroxide, Solid Form. https://www.coleparmer.com/

  112. Fisher Scientific. Sodium Meta-Silicate, 9-Hydrate. https://www.fishersci.com/

  113. Fisher Scientific. Sodium meta-Silicate Nonahydrate. https://www.fishersci.com/

  114. Dramix Karawang EPD (2022)

    Google Scholar 

  115. Dramix Lonand EPD (2022)

    Google Scholar 

  116. Dramix Petrovice EPD (2019)

    Google Scholar 

  117. Brojan, L., Petric, A., Clouston, P.L.: Comparative study of brick and straw bale wall systems from environmental, economical and energy perspectives. ARPN J. Eng. Appl. Sci. 8 (2013)

    Google Scholar 

  118. NRS. Standlee Certified Straw Compressed Bale. https://nrsworld.com/products/standlee-certified-straw-compressed-bale

  119. ASTM International. Environmental Product Declaration: Portland Cement (2021)

    Google Scholar 

  120. Environmental Product Declaration - UK Average Portland Cement (2013)

    Google Scholar 

  121. Garside, M.: Cement Prices in the United States from 2010 to 2021. Statista. https://www.statista.com/statistics/219339/us-prices-of-cement/#:~:text=In%202021%2C%20the%20price%20of%20cement%20in%20the,ash%20and%20lime%20were%20used%20to%20form%20mortar. (2022)

  122. Iorio, M., Marra, F., Santarelli, M.L., González-Benito, J.: Reinforcement-matrix interactions and their consequences on the mechanical behavior of basalt fibers-cement composites. Constr. Build. Mater. 309 (2021)

    Google Scholar 

  123. Amran, M., et al.: Fiber-reinforced alkali-activated concrete: a review. J. Build. Eng. 45 (2022). https://doi.org/10.1016/j.jobe.2021.103638

  124. Kesikidou, F., Stefanidou, M.: Natural fiber-reinforced mortars. J. Build. Eng. 25 (2019)

    Google Scholar 

  125. Ahmad, J., et al.: Performance of concrete reinforced with jute fibers (natural fibers): a review. J. Eng. Fiber Fabr. 17, 1–17 (2022)

    Google Scholar 

  126. Rehman, A.U., Kim, J.H.: 3D concrete printing: a systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics. Materials 14 (2021). https://doi.org/10.3390/ma14143800

  127. Pawelzik, P., et al.: Critical aspects in the life cycle assessment (LCA) of bio-based materials - reviewing methodologies and deriving recommendations. Resour. Conserv. Recycl. 73 (2013). https://doi.org/10.1016/j.resconrec.2013.02.006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katy Bradford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bradford, K. (2023). Biobased Fiber Reinforced Composite Materials for Construction 3D-Printing. In: Amziane, S., Merta, I., Page, J. (eds) Bio-Based Building Materials. ICBBM 2023. RILEM Bookseries, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-031-33465-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33465-8_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33464-1

  • Online ISBN: 978-3-031-33465-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics