Skip to main content

Influence of Aspect Ratio on the Properties of Compressed Earth Cylinders and Compressed Earth Blocks

  • Conference paper
  • First Online:
Bio-Based Building Materials (ICBBM 2023)

Abstract

A large proportion of the human population still resides in earthen structures all over the world. The benefits of earth construction are widely reported, but there is a lack of scientific understanding relating to standard production and test methods which has led to inconsistencies in the reporting of engineering parameters, such as compressive strength.

This study investigates the use of small-scale Compressed Earth Cylinders (CECs) to predict the compressive strength of equivalent full-scale Compressed Earth Blocks (CEBs). A full-scale manual CEB machine and a small-scale CEC moulding rig were utilised for the production of test specimens and the results obtained from both production methods were examined.

Two soil types with different engineering parameters were utilised in this investigation. It was found that a sample of un-stabilised CEB with an aspect ratio of 0.67 achieved a mean compressive strength of 6.73 N/mm2 (Soil A) and 4.60 N/mm2 (Soil B). A selection of CECs with an aspect ratio ranging from 0.50 to 2.00 were used to determine a relationship between the aspect ratio and compressive strength for each soil type. The theoretical relationship was used to predict the compressive strength of the equivalent CEBs within ± 3.0%. The theoretical relationship was also used to predict the unconfined compressive strength of the samples and enabled the determination of aspect ratio correction factors of Soil A and Soil B.

Findings from this study reveal that the conversion factors between cylinders and blocks are dependent on numerous variables including compaction pressure, aspect ratio, soil type and density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aubert, J.-E., Faria, P., Maillard, P., Ouedraogo, K.A.J., Ouellet-Plamondon, C., Prud’homme, E.: Characterization of earth used in earth construction materials. In: Fabbri, A., Morel, J.-C., Aubert, J.-E., Bui, Q.-B., Gallipoli, D., Reddy, B.V.V. (eds.) Testing and Characterisation of Earth-based Building Materials and Elements. RSR, vol. 35, pp. 17–81. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-83297-1_2

    Chapter  Google Scholar 

  2. Morel, J.C., Pkla, A., Walker, P.: Compressive strength testing of compressed earth blocks. Constr. Build. Mater. 21, 303–309 (2007). https://doi.org/10.1016/j.conbuildmat.2005.08.021

    Article  Google Scholar 

  3. Olivier, M., Mesbah, A., El Gharbi, Z., Morel, J.C.: Mode opératoire pour la réalisation d’essais de résistance sur blocs de terre comprimée. Mater. Struct. 30, 515–517 (1997). https://doi.org/10.1007/bf02486394

    Article  Google Scholar 

  4. Morel, J., Pkla, A.: A model to measure compressive strength of compressed earth blocks. Constr. Build. Mater. 16, 303–310 (2002)

    Article  Google Scholar 

  5. Walker, P.J.: Strength and erosion characteristics of earth blocks and earth block masonry. J. Mater. Civ. Eng. 16, 497–506 (2004). https://doi.org/10.1061/(ASCE)0899-1561(2004)16:5(414)

    Article  Google Scholar 

  6. Cottrell, J.A., Ali, M., Tatari, A., Martinson, D.B.: An investigation into the influence of geometry on compressed earth building blocks using finite element analysis. Constr. Build. Mater. 273, 121997 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121997

    Article  Google Scholar 

  7. Lan, G.Q., Wang, Y.H., Chao, S.S.: Influences of specimen geometry and loading rate on compressive strength of unstabilized compacted earth block. Adv. Mater. Sci. Eng. 2018 (2018). https://doi.org/10.1155/2018/5034256

  8. Neville, A.M.: Properties of Concrete, 4th edn. Pearson, Essex (2004)

    Google Scholar 

  9. Middleton, G.F., Schneider, L.M.: Bulletin 5: Earth-wall Construction, 4th edn. CSIRO Division of Building, Construction and Engineering, Sydney (1987)

    Google Scholar 

  10. Walker, P.: Standards Australia, HB 195 - The Australian Earth Building Handbook. Standards Australia International Ltd, Sydney (2002)

    Google Scholar 

  11. Standards New Zealand, NZS 4298:1998. Materials and Workmanship for Earth Buildings, p. 91 (1998)

    Google Scholar 

  12. Rigassi, V.: Compressed Earth Blocks: Manual of Production, Deutsches Zentrum für Entwicklungstechnologien, Deutsche Gesellschaft für Technische Zusammenarbeit (1985)

    Google Scholar 

  13. Walker, P., Stace, T.: Properties of some cement stabilised compressed earth blocks and mortars. Mater. Struct. Constr. 30, 545–551 (1997). https://doi.org/10.1007/bf02486398

    Article  Google Scholar 

  14. Sekhar, D.C., Nayak, S.: Utilization of granulated blast furnace slag and cement in the manufacture of compressed stabilized earth blocks. Constr. Build. Mater. 166, 531–536 (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.125

    Article  Google Scholar 

  15. Danso, H., Martinson, D.B., Ali, M., Williams, J.B.: Physical, mechanical and durability properties of soil building blocks reinforced with natural fibres. Constr. Build. Mater. 101, 797–809 (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.069

    Article  Google Scholar 

  16. Delgado, M.C.J., Guerrero, I.C.: Earth building in Spain. Constr. Build. Mater. 20, 679–690 (2006). https://doi.org/10.1016/j.conbuildmat.2005.02.006

    Article  Google Scholar 

  17. Laursen, P.T., Herskedal, N.A., Jansen, D.C., Qu, B.: Out-of-plane structural response of interlocking compressed earth block walls. Mater. Struct. 48(1–2), 321–336 (2013). https://doi.org/10.1617/s11527-013-0186-2

    Article  Google Scholar 

  18. Donkor, P., Obonyo, E.: Earthen construction materials: assessing the feasibility of improving strength and deformability of compressed earth blocks using polypropylene fibers. Mater. Des. 83, 813–819 (2015). https://doi.org/10.1016/j.matdes.2015.06.017

    Article  Google Scholar 

  19. Sitton, J.D., Zeinali, Y., Heidarian, W.H., Story, B.A.: Effect of mix design on compressed earth block strength. Constr. Build. Mater. 158, 124–131 (2018). https://doi.org/10.1016/j.conbuildmat.2017.10.005

    Article  Google Scholar 

  20. Villamizar, M.C.N., Araque, V.S., Reyes, C.A.R., Silva, R.S.: Effect of the addition of coal-ash and cassava peels on the engineering properties of compressed earth blocks. Constr. Build. Mater. 36, 276–286 (2012). https://doi.org/10.1016/j.conbuildmat.2012.04.056

    Article  Google Scholar 

  21. Reddy, B.V.V., et al.: Codes and standards on earth construction. In: Fabbri, A., Morel, J.-C., Aubert, J.-E., Bui, Q.-B., Gallipoli, D., Reddy, B.V.V. (eds.) Testing and Characterisation of Earth-based Building Materials and Elements. RSR, vol. 35, pp. 243–259. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-83297-1_7

    Chapter  Google Scholar 

  22. Standards New Zealand, NZS 4297:1998. Engineering Design of Earth Buildings, p. 63 (1998)

    Google Scholar 

  23. Standards New Zealand, NZS 4299:1998, Earth Build. Not Requiring Specif. Des. Build. Code Compliance Doc. 4299, p. 131 (1998)

    Google Scholar 

  24. Krefeld, W.J.: Effect of shape of specimens on the apparent compressive strength of brick masonry. In: Proceedings of the American Society for Testing Materials, Philadelphia, pp. 363–369 (1938)

    Google Scholar 

  25. British Standards Institute, BS 1377-7:1990, Soils Civ. Eng. Purp.—Part 7 Shear Strength Tests Total Stress. (1990)

    Google Scholar 

  26. American Society for Testing and Materials, ASTM D1633 - 00, Standard Test Methods Compressive Strength Molded Soil-Cement Cylinder, pp. 1–15 (2007). https://www.astm.org/DATABASE.CART/HISTORICAL/D1633-00.htm

  27. American Society for Testing and Materials, ASTM D5102 - 22, Standard Test Method Unconfined Compressive Strength Compact. Soil-Lime Mixtures, 04 August 2022, p. 7 (2022). https://doi.org/10.1520/D5102_D5102M-22

  28. American Society for Testing and Materials, ASTM D7012 - 14, Standard Test Method Compressive Strength Elastic Moduli of Intact Rock Core Specimens under Varying States Stress Temperature, pp. 1–8 (2014). https://doi.org/10.1520/D7012-14.1.5.1.1

  29. American Society for Testing and Materials, ASTM C39/C39M, Standard Test Method compressive strength of cylindrical concrete specimens, pp. 1–5 (2001)

    Google Scholar 

  30. BS EN 12390-1:2021, BSI Standards Publication Testing hardened concrete, p. 18. British Standard (2021)

    Google Scholar 

  31. Rangasamy, G., et al.: An extensive analysis of mechanical, thermal and physical properties of jute fiber composites with different fiber orientations. Case Stud. Therm. Eng. 28, 101612 (2021). https://doi.org/10.1016/j.csite.2021.101612

  32. C, BS EN 13791:2019, Assess. in-Situ Compressive Strength Struct. Precast Concr. Components (2019)

    Google Scholar 

  33. American Society for Testing and Materials, ATSM C42/C42M, Obtaining Test. Drill. Core Sawed Beams Concrete, p. 6 (2004)

    Google Scholar 

  34. Walker, P., Keable, R., Martin, J., Maniatids, V.: Rammed earth design and construction guidelines. In: BRE Bookshop, Watford (2019). https://doi.org/10.5040/9781350122741.1002057

  35. Ghavami, K., Toledo Filho, R.D., Barbosa, N.P.: Behaviour of composite soil reinforced with natural fibres. Cem. Concr. Compos. 21, 39–48 (1999). https://doi.org/10.1016/S0958-9465(98)00033-X

    Article  Google Scholar 

  36. Jafari, M., Esna-ashari, M.: Effect of waste tire cord reinforcement on unconfined compressive strength of lime stabilized clayey soil under freeze-thaw condition. Cold Reg. Sci. Technol. 82, 21–29 (2012). https://doi.org/10.1016/j.coldregions.2012.05.012

    Article  Google Scholar 

  37. Silveira, D., Varum, H., Costa, A.: Influence of the testing procedures in the mechanical characterization of adobe bricks. Constr. Build. Mater. 40, 719–728 (2013). https://doi.org/10.1016/j.conbuildmat.2012.11.058

    Article  Google Scholar 

  38. Aubert, J.E., Maillard, P., Morel, J.C., Al Rafii, M.: Towards a simple compressive strength test for earth bricks? Mater. Struct. 49(5), 1641–1654 (2015). https://doi.org/10.1617/s11527-015-0601-y

    Article  Google Scholar 

  39. British Standards Institution, BS 8601:2013. Specification for Subsoil and Requirements for Use, p. 30 (2013)

    Google Scholar 

  40. British Standards Institution, BS 1377-2:2022, Methods Test Soils for Civil Engineering Purposes Part 2 Classification tests and Determination of Geotechnical Properties vol. 3, p. 158 (2022)

    Google Scholar 

  41. Malvern Panalytical Ltd, Mastersizer 3000 (2020). https://www.malvernpanalytical.com/en/products/product-range/mastersizer-range?creative=328687395069&keyword=mastersizer&matchtype=e&network=g&device=c&gclid=EAIaIQobChMImbDMvZvv6AIVhbTtCh1YeAhXEAAYASAAEgLaCPD_BwE. Accessed 1 Mar 2020

  42. Autodesk Inc, AutoCAD 2019 (2019). https://www.autodesk.com/education/free-software/autocad

  43. Genlab Ltd, Genlab Classic Ovens (2020). https://www.genlab.co.uk/57-genlab-classic-ovens. Accessed 10 June 2020

  44. Danso, H., Martinson, D.B., Ali, M., Williams, J.B.: Effect of sugarcane bagasse fibre on the strength properties of soil blocks. In: 1st International Conference on Bio-Based Building Materials (2015)

    Google Scholar 

  45. Danso, H., Martinson, B., Ali, M., Mant, C.: Performance characteristics of enhanced soil blocks: a quantitative review. Build. Res. Inf. 43, 253–262 (2015). https://doi.org/10.1080/09613218.2014.933293

    Article  Google Scholar 

  46. Danso, H., Martinson, D.B., Ali, M., Williams, J.B.: Mechanisms by which the inclusion of natural fibres enhance the properties of soil blocks for construction. J. Compos. Mater. 51, 3835–3845 (2017). https://doi.org/10.1177/0021998317693293

    Article  Google Scholar 

  47. Danso, H.: Use of agricultural waste fibres as enhancement of soil blocks for low-cost housing in Ghana (2016)

    Google Scholar 

  48. British Standards Institute, BS EN 12390-3:2019, Testing Hardened Concrete Part 3 Compressive Strength Test Specimens (2019)

    Google Scholar 

  49. British Standards Institute, BS EN 772-1:2011+A1:2015. Methods Test Masonry Units. Determine the compressive strength (2011). https://bsol.bsigroup.com

  50. Minitab Inc, Minitab 17.3.1, (2016). https://www.minitab.com/en-us/

  51. Murdock, J.W., Kesler, C.E.: Effect of Length of Specimen on the Apparent Compressive Strength of Concrete, ASTM Committee. C9 Concrete and Concrete Aggregates (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Andrew Cottrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cottrell, J.A., Ali, M. (2023). Influence of Aspect Ratio on the Properties of Compressed Earth Cylinders and Compressed Earth Blocks. In: Amziane, S., Merta, I., Page, J. (eds) Bio-Based Building Materials. ICBBM 2023. RILEM Bookseries, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-031-33465-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33465-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33464-1

  • Online ISBN: 978-3-031-33465-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics