Skip to main content

Adaptive View-Aligned and Feature Augmentation Network for Partially View-Aligned Clustering

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13935))

Included in the following conference series:

  • 1201 Accesses

Abstract

As an important task in multi-view clustering, partially view-aligned clustering has attracted increasing attention in recent years. However, previous algorithms have two limitations: (1) they manually calculate the fixed alignment matrix based on Euclidean distance and use the fixed matrix for common feature expression. The manual fixed alignment matrix fails to adequately reflect the similarity of the training data; (2) the process of learning features is isolated from the downstream clustering task, thus learned features are unsuitable for the clustering scenario. In this paper, we propose an adaptive view-aligned and feature augmentation network (AFAN) to tackle these two issues. First, we propose an adaptive view-aligned module to calculate the alignment matrix with the self-attention mechanism. The calculated alignment matrix can capture data similarity by jointly learning data features and view alignment. Second, we introduce a self-augmentation strategy to encourage the learned features of the same cluster to be crowded together. Extensive experimental results show that AFAN outperforms state-of-the-art approaches on four benchmark datasets.

This work was supported in part by the National Natural Science Foundation of China under Grant 61972065, Grant 62006034; in part by the Natural Science Foundation of Liaoning Province under Grant 2021-BS-067; in part by the Social Science Planning Foundation of Liaoning Province under Grant L21CXW003; in part by the State Key Laboratory of Novel Software Technology, Nanjing University under Grant KFKT2022B41; and in part by the Dalian High-level Talent Innovation Support Plan under Grant 2021RQ056.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://weegee.vision.ucmerced.edu/datasets/landuse.html.

References

  1. Andrew, G., Arora, R., Bilmes, J.A., Livescu, K.: Deep canonical correlation analysis. In: ICML, vol. 28, pp. 1247–1255 (2013)

    Google Scholar 

  2. Chaudhuri, K., Kakade, S.M., Livescu, K., Sridharan, K.: Multi-view clustering via canonical correlation analysis. In: ICML, vol. 382, pp. 129–136 (2009). https://doi.org/10.1145/1553374.1553391

  3. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: CVPR, pp. 524–531 (2005). https://doi.org/10.1109/CVPR.2005.16

  4. Huang, Z., Hu, P., Zhou, J.T., Lv, J., Peng, X.: Partially view-aligned clustering. In: NeurIPS (2020)

    Google Scholar 

  5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  6. Lampert, C.H., Krömer, O.: Weakly-paired maximum covariance analysis for multimodal dimensionality reduction and transfer learning. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 566–579. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-9_41

    Chapter  Google Scholar 

  7. Li, J., Liu, G.: Few-shot image classification via contrastive self-supervised learning. CoRR abs/2008.09942 (2020)

    Google Scholar 

  8. Li, Y., Nie, F., Huang, H., Huang, J.: Large-scale multi-view spectral clustering via bipartite graph. In: AAAI, pp. 2750–2756 (2015)

    Google Scholar 

  9. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  10. Mallah, C., Cope, J., Orwell, J., et al.: Plant leaf classification using probabilistic integration of shape, texture and margin features. Signal Processing, Pattern Recognition and Applications 5(1), 45–54 (2013)

    Google Scholar 

  11. Nie, F., Li, J., Li, X.: Self-weighted multiview clustering with multiple graphs. In: IJCAI, pp. 2564–2570 (2017). https://doi.org/10.24963/ijcai.2017/357

  12. Peng, X., Huang, Z., Lv, J., Zhu, H., Zhou, J.T.: COMIC: multi-view clustering without parameter selection. In: ICML, vol. 97, pp. 5092–5101 (2019)

    Google Scholar 

  13. Vinokourov, A., Shawe-Taylor, J., Cristianini, N.: Inferring a semantic representation of text via cross-language correlation analysis. In: NIPS, pp. 1473–1480 (2002)

    Google Scholar 

  14. Wen, J., Zhang, Z., Xu, Y., Zhang, B., Fei, L., Xie, G.: Cdimc-net: cdeep incomplete multi-view clustering network. In: IJCAI, pp. 3230–3236 (2020). https://doi.org/10.24963/ijcai.2020/447

  15. Wen, J., Zhang, Z., Zhang, Z., Wu, Z., Fei, L., Xu, Y., Zhang, B.: Dimc-net: deep incomplete multi-view clustering network. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 3753–3761 (2020). https://doi.org/10.1145/3394171.3413807

  16. Xie, J., Girshick, R.B., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: ICML, vol. 48, pp. 478–487 (2016)

    Google Scholar 

  17. Xu, C., Guan, Z., Zhao, W., Wu, H., Niu, Y., Ling, B.: Adversarial incomplete multi-view clustering. In: IJCAI, pp. 3933–3939 (2019). https://doi.org/10.24963/ijcai.2019/546

  18. Yang, M., Li, Y., Huang, Z., Liu, Z., Hu, P., Peng, X.: Partially view-aligned representation learning with noise-robust contrastive loss. In: CVPR, pp. 1134–1143. Computer Vision Foundation/IEEE (2021)

    Google Scholar 

  19. Yin, M., Huang, W., Gao, J.: Shared generative latent representation learning for multi-view clustering. In: AAAI, pp. 6688–6695 (2020)

    Google Scholar 

  20. Zhang, C., Hu, Q., Fu, H., Zhu, P., Cao, X.: Latent multi-view subspace clustering. In: CVPR, pp. 4333–4341 (2017). https://doi.org/10.1109/CVPR.2017.461

  21. Zhang, C., Liu, Y., Fu, H.: Ae2-nets: autoencoder in autoencoder networks. In: CVPR, pp. 2577–2585 (2019)

    Google Scholar 

  22. Zhang, X., Mu, J., Liu, H., Zhang, X.: Graphnet: graph clustering with deep neural networks. In: ICASSP, pp. 3800–3804 (2021)

    Google Scholar 

  23. Zhang, X., Zong, L., Liu, X., Yu, H.: Constrained nmf-based multi-view clustering on unmapped data. In: AAAI, pp. 3174–3180. AAAI Press (2015)

    Google Scholar 

  24. Zhao, H., Ding, Z., Fu, Y.: Multi-view clustering via deep matrix factorization. In: Singh, S., Markovitch, S. (eds.) AAAI, pp. 2921–2927 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Zong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Chen, M., Mu, J., Zong, L. (2023). Adaptive View-Aligned and Feature Augmentation Network for Partially View-Aligned Clustering. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13935. Springer, Cham. https://doi.org/10.1007/978-3-031-33374-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33374-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33373-6

  • Online ISBN: 978-3-031-33374-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics