Skip to main content

Breastfeeding and Maternal Bacterial Infections

  • Chapter
  • First Online:
Breastfeeding and Metabolic Programming

Abstract

Breast milk is a miraculous nutrient specially produced for each baby. Breast milk, the essential source of infant nutrition, provides different benefits with every component it contains. Skin-to-skin contact with the mother during breastfeeding reduces the baby’s stress, eases the baby’s adaptation to the world, and contributes to neurobehavioral development [1]. Breast milk has many more benefits further than growth and development. The formation of the gastrointestinal microbiota, reduction in the risk of necrotizing enterocolitis (NEC), protection against various diseases such as oral candidiasis, otitis media, and respiratory, gastrointestinal, and urinary tract infections, and a reduction in the mortality risk in the first months of life for any reason are some of the short-term benefits provided by breast milk [1–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prentice AM. Breastfeeding in the modern world. Ann Nutr Metab. 2022;78(Suppl 2):29–38.

    Article  PubMed  Google Scholar 

  2. American Academy of Pediatrics Committee on Drugs. Transfer of drugs and other chemicals into human milk. Pediatrics. 2001;108:776–89.

    Article  Google Scholar 

  3. Kawalec A, Zwolińska D. Emerging role of microbiome in the prevention of urinary tract infections in children. Int J Mol Sci. 2022;23(2):870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Altobelli E, Angeletti PM, Verrotti A, Petrocelli R. The impact of human milk on necrotizing enterocolitis: a systematic review and meta-analysis. Nutrients. 2020;12(5):1322.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zimmermann P, Curtis N. Breast milk microbiota: a review of the factors that influence composition. J Infect. 2020;81:17–47.

    Article  CAS  PubMed  Google Scholar 

  6. Röszer T. Mother-to-child signaling through breast milk biomolecules. Biomol Ther. 2021;11(12):1743.

    Google Scholar 

  7. Eidelman AI, Schanler RJ, Johnston M, et al. Sectıon on breastfeeding, Breastfeeding and the use of human milk. Pediatrics. 2012;129:e827–41.

    Article  Google Scholar 

  8. Lönnerdal B. Bioactive proteins in human milk-potential benefits for preterm infants. Clin Perinatol. 2017;44:179–91.

    Article  PubMed  Google Scholar 

  9. Pai UA, Chandrasekhar P, Carvalho RS, Kumar S. The role of nutrition in immunity in infants and toddlers: an expert panel opinion. Clin Epidemiol Glob Health. 2018;7:155–9.

    Article  Google Scholar 

  10. Horta BL, de Lima NP. Breastfeeding and type 2 diabetes: systematic review and meta-analysis. Curr Diab Rep. 2019;19(1):1.

    Article  PubMed  Google Scholar 

  11. Meek JY, Noble L. Policy statement: Breastfeeding and the use of human milk. Pediatrics. 2022;150(1):e2022057988.

    Article  PubMed  Google Scholar 

  12. World Health Organization. Guideline: protecting, promoting and supporting breastfeeding in facilities providing maternity and newborn services. Geneva: World Health Organization; 2017. p. 1–120. https://www.who.int/publications/i/item/9789241550086. Accessed 3 Mar 2023).

  13. Kim JH, Bode L, Ogra PL. Human milk. In: Wilson CB, Nizet V, Maldonado YA, Remington JS, Klein JO, editors. Remington and Klein’s infectious diseases of the fetus and newborn infant. 8th ed. Philadelphia, PA: Elsevier; 2016. p. 189–213.

    Google Scholar 

  14. Hanson LA. Comparative immunological studies of the immune globulins of human milk and of blood serum. Int Arch Allergy Appl Immunol. 1961;18:241–67.

    Article  CAS  PubMed  Google Scholar 

  15. Johansen FE, Braathen R, Brandtzaeg P. The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA. J Immunol. 2001;167:5185–92.

    Article  CAS  PubMed  Google Scholar 

  16. Kleist SA, Knoop KA. Understanding the elements of maternal protection from systemic bacterial infections during early life. Nutrients. 2020;12(4):1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Capasso L, Borrelli A, Cerullo J, et al. Role of immunoglobulins in neonatal sepsis. Transl Med UniSa. 2014;11:28–33.

    PubMed  PubMed Central  Google Scholar 

  18. Fishaut M, Murphy D, Neifert M, McIntosh K, Ogra PL. Bronchomammary axis in the immune response to respiratory syncytial virus. J Pediatr. 1981;99:186–91.

    Article  CAS  PubMed  Google Scholar 

  19. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361(9356):512–9.

    Article  PubMed  Google Scholar 

  20. Lamounier JA, Moulin ZS, Xavier CC. Recomendações quanto à amamentação na vigência de infecção materna [Recommendations for breastfeeding during maternal infections]. J Pediatr (Rio J). 2004;80(5 Suppl):s181–188. [article in Portuguese, abstract in English].

    Google Scholar 

  21. Sharma N, Devi B, Sharma M. Impressive antimicrobial potential of human milk: a blessing for nascent life. In: Cole JI, editor. Human milk nutritional content and role in health and disease. 1st ed. New York: Nova Science Publishers; 2021. p. 1–69.

    Google Scholar 

  22. Rio-Aige K, Azagra-Boronat I, Castell M, et al. The breast milk immunoglobulinome. Nutrients. 2021;13(6):1810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reddy V, Bhaskaram C, Raghuramulu N, Jagadeesan V. Antimicrobial factors in human milk. Acta Paediatr Scand. 1977;66:229–32.

    Article  CAS  PubMed  Google Scholar 

  24. Zheng W, Zhao W, Wu M, et al. Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature. 2020;577(7791):543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nguyen TG. The therapeutic implications of activated immune responses via the enigmatic immunoglobulin D. Int Rev Immunol. 2022;41:107–22.

    Article  CAS  PubMed  Google Scholar 

  26. Litwin SD, Zehr BD, Insel RA. Selective concentration of IgD class-specific antibodies in human milk. Clin Exp Immunol. 1990;80:263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meng X, Dunsmore G, Koleva P, et al. The profile of human milk metabolome, cytokines, and antibodies in inflammatory bowel diseases versus healthy mothers, and potential impact on the newborn. J Crohns Colitis. 2019;13:431–41.

    Article  PubMed  Google Scholar 

  28. Bahna SL, Keller MA, Heiner DC. IgE and IgD in human colostrum and plasma. Pediatr Res. 1982;16:604–7.

    Article  CAS  PubMed  Google Scholar 

  29. Goldman AS, Chheda S. The immune system in human milk: a historic perspective. Ann Nutr Metab. 2021;77:189–96.

    Article  CAS  PubMed  Google Scholar 

  30. Hendricks GM. Bioactive components in human milk. In: Guo M, editor. Human milk biochemistry and infant formula manufacturing technology. 1st ed. Philadelphia, PA: Elsevier; 2014. p. 33–54.

    Chapter  Google Scholar 

  31. Benkerroum N. Antimicrobial activity of lysozyme with special relevance to milk. Afr J Biotechnol. 2009;725(25):4856–67.

    Google Scholar 

  32. Chang R, Ng TB, Sun WZ. Lactoferrin as potential preventative and adjunct treatment for COVID-19. Int J Antimicrob Agents. 2020;56(3):106118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maga EA, Desai PT, Weimer BC, Dao N, Kültz D, Murray JD. Consumption of lysozyme-rich milk can alter microbial fecal populations. Appl Environ Microbiol. 2012;78(17):6153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Demmelmair H, Prell C, Timby N, Lönnerdal B. Benefits of lactoferrin, osteopontin and milk fat globule membranes for infants. Nutrients. 2017;9(8):817.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Almeida CC, Mendonça Pereira BF, Leandro KC, Costa MP, Spisso BF, Conte-Junior CA. Bioactive compounds in infant formula and their effects on infant nutrition and health: a systematic literature review. Int J Food Sci. 2021;2021:8850080.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brandenburg K, Jürgens G, Müller M, Fukuoka S, Koch MH. Biophysical characterization of lipopolysaccharide and lipid A inactivation by lactoferrin. Biol Chem. 2001;382:1215–25.

    Article  CAS  PubMed  Google Scholar 

  37. Alexander DB, Iigo M, Yamauchi K, Suzui M, Tsuda H. Lactoferrin: an alternative view of its role in human biological fluids. Biochem Cell Biol. 2012;90:279–306.

    Article  CAS  PubMed  Google Scholar 

  38. Lönnerdal B. Infant formula and infant nutrition: bioactive proteins of human milk and implications for composition of infant formulas. Am J Clin Nutr. 2014;99:s712–7.

    Article  Google Scholar 

  39. Qiu J, Hendrixson DR, Baker EN, Murphy TF, St Geme JW 3rd, Plaut AG. Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae. Proc Natl Acad Sci U S A. 1998;95(21):12641–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanson LA, Korotkova M. The role of breastfeeding in prevention of neonatal infection. Semin Neonatol. 2002;7:275–81.

    Article  PubMed  Google Scholar 

  41. Barboza M, Pinzon J, Wickramasinghe S, et al. Glycosylation of human milk lactoferrin exhibits dynamic changes during early lactation enhancing its role in pathogenic bacteria-host interactions. Mol Cell Proteomics. 2012;11(6):M111.015248.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Suzuki YA, Lopez V, Lönnerdal B. Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci. 2005;62:2560–75.

    Article  CAS  PubMed  Google Scholar 

  43. Håversen LA, Engberg I, Baltzer L, Dolphin G, Hanson LA, Mattsby-Baltzer I. Human lactoferrin and peptides derived from a surface-exposed helical region reduce experimental Escherichia coli urinary tract infection in mice. Infect Immun. 2000;68:5816–23.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Manzoni P, Rinaldi M, Cattani S, et al. Italian Task Force for the Study and Prevention of Neonatal Fungal Infections, Italian Society of Neonatology Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. JAMA. 2009;302:1421–8.

    Article  CAS  PubMed  Google Scholar 

  45. Layman DK, Lönnerdal B, Fernstrom JD. Applications for α-lactalbumin in human nutrition. Nutr Rev. 2018;76:444–60.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pellegrini A, Thomas U, Bramaz N, Hunziker P, von Fellenberg R. Isolation and identification of three bactericidal domains in the bovine alpha-lactalbumin molecule. Biochim Biophys Acta. 1999;1426:439–48.

    Article  CAS  PubMed  Google Scholar 

  47. Golinelli LP, Del Aguila EM, Paschoalin VF, Silva JT, Conte-Junior CA. Functional aspect of colostrum and whey proteins in human milk. J Hum Nutr Food Sci. 2014;2(3):1035.

    Google Scholar 

  48. Lönnerdal B, Erdmann P, Thakkar SK, Sauser J, Destaillats F. Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: a developmental perspective. J Nutr Biochem. 2017;41:1–11.

    Article  PubMed  Google Scholar 

  49. Brück WM, Graverholt G, Gibson GR. A two-stage continuous culture system to study the effect of supplemental alpha-lactalbumin and glycomacropeptide on mixed cultures of human gut bacteria challenged with enteropathogenic Escherichia coli and Salmonella serotype Typhimurium. J Appl Microbiol. 2003;95:44–53.

    Article  PubMed  Google Scholar 

  50. Gustafsson L, Hallgren O, Mossberg AK, et al. HAMLET kills tumor cells by apoptosis: structure, cellular mechanisms, and therapy. J Nutr. 2005;135:1299–303.

    Article  CAS  PubMed  Google Scholar 

  51. Kulinich A, Liu L. Human milk oligosaccharides: the role in the fine-tuning of innate immune responses. Carbohydr Res. 2016;432:62–70.

    Article  CAS  PubMed  Google Scholar 

  52. Wang Y, Zhou X, Gong P, et al. Comparative majör oligosaccharides and lactose between Chinese human and animal milk. Int Dairy J. 2020;108:104727.

    Article  CAS  Google Scholar 

  53. Thongaram T, Hoeflinger JL, Chow J, Miller MJ. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. J Dairy Sci. 2017;100:7825–33.

    Article  CAS  PubMed  Google Scholar 

  54. Moossavi S, Atakora F, Miliku K, et al. Integrated analysis of human milk microbiota with oligosaccharides and fatty acids in the CHILD cohort. Front Nutr. 2019;6:58.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wu RY, Li B, Koike Y, et al. Human milk oligosaccharides increase mucin expression in experimental necrotizing enterocolitis. Mol Nutr Food Res. 2019;63(3):e1800658.

    PubMed  Google Scholar 

  56. Triantis V, Bode L, van Neerven RJJ. Immunological effects of human milk oligosaccharides. Front Pediatr. 2018;6:190.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kim YJ. Immunomodulatory effects of human colostrum and milk. Pediatr Gastroenterol Hepatol Nutr. 2021;24:337–45.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bhinder G, Allaire JM, Garcia C, et al. Milk fat globule membrane supplementation in formula modulates the neonatal gut microbiome and normalizes intestinal development. Sci Rep. 2017;7:45274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ambrożej D, Dumycz K, Dziechciarz P, Ruszczyński M. Milk fat globule membrane supplementation in children: systematic review with meta-analysis. Nutrients. 2021;13(3):714.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Brooker BE. The epithelial cells and cell fragments in human milk. Cell Tissue Res. 1980;210:321–32.

    Article  CAS  PubMed  Google Scholar 

  61. Bardanzellu F, Peroni DG, Fanos V. Human breast milk: bioactive components, from stem cells to health outcomes. Curr Nutr Rep. 2020;9:1–13.

    Article  CAS  PubMed  Google Scholar 

  62. Hassiotou F, Beltran A, Chetwynd E, et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells. 2012;30:2164–74.

    Article  PubMed  Google Scholar 

  63. Rudloff HE, Schmalstieg FC Jr, Mushtaha AA, Palkowetz KH, Liu SK, Goldman AS. Tumor necrosis factor-alpha in human milk. Pediatr Res. 1992;31:29–33.

    Article  CAS  PubMed  Google Scholar 

  64. Ngom PT, Collinson AC, Pido-Lopez J, Henson SM, Prentice AM, Aspinall R. Improved thymic function in exclusively breastfed infants is associated with higher interleukin 7 concentrations in their mothers’ breast milk. Am J Clin Nutr. 2004;80:722–8.

    Article  CAS  PubMed  Google Scholar 

  65. Saso A, Blyuss O, Munblit D, Faal A, Moore SE, Le Doare K. Breast milk cytokines and early growth in Gambian infants. Front Pediatr. 2019;6:414.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zou Z, Bauland J, Hewavitharana AK, et al. A sensitive, high-throughput fluorescent method for the determination of lactoperoxidase activities in milk and comparison in human, bovine, goat, and camel milk. Food Chem. 2021;339:128090.

    Article  CAS  PubMed  Google Scholar 

  67. Sousa SG, Delgadillo I, Saraiva JA. Effect of thermal pasteurisation and high-pressure processing on immunoglobulin content and lysozyme and lactoperoxidase activity in human colostrum. Food Chem. 2014;151:79–85.

    Article  CAS  PubMed  Google Scholar 

  68. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM. Functions and emerging applications of bacteriocins. Curr Opin Biotechnol. 2018;49:23–8.

    Article  CAS  PubMed  Google Scholar 

  69. Gridneva Z, Tie WJ, Rea A, et al. Human milk casein and whey protein and infant body composition over the first 12 months of lactation. Nutrients. 2018;10(9):1332.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Strömqvist M, Falk P, Bergström S, et al. Human milk kappa-casein and inhibition of Helicobacter pylori adhesion to human gastric mucosa. J Pediatr Gastroenterol Nutr. 1995;21:288–96.

    Article  PubMed  Google Scholar 

  71. Wada Y, Lönnerdal B. Bioactive peptides derived from human milk proteins--mechanisms of action. J Nutr Biochem. 2014;25:503–14.

    Article  CAS  PubMed  Google Scholar 

  72. Adkins Y, Lönnerdal B. Potential host-defense role of a human milk vitamin B-12-binding protein, haptocorrin, in the gastrointestinal tract of breastfed infants, as assessed with porcine haptocorrin in vitro. Am J Clin Nutr. 2003;77:1234–40.

    Article  CAS  PubMed  Google Scholar 

  73. Biagi E, Quercia S, Aceti A, et al. The bacterial ecosystem of mother’s milk and infant’s mouth and gut. Front Microbiol. 2017;8:1214.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zimmermann P, Curtis N. Factors influencing the intestinal microbiome during the first year of life. Pediatr Infect Dis J. 2018;37:e315–35.

    Article  PubMed  Google Scholar 

  75. Nakano V, Ignacio A, Fernandes MR, Fukugaiti MH, Avila-Campos MJ. Intestinal Bacteroides and Parabacteroides species producing antagonistic substances. Microbiology. 2006;1:61–4.

    Google Scholar 

  76. Jiang M, Zhang F, Wan C, et al. Evaluation of probiotic properties of Lactobacillus plantarum WLPL04 isolated from human breast milk. J Dairy Sci. 2016;99:1736–46.

    Article  CAS  PubMed  Google Scholar 

  77. Swartz MN. Recognition and management of anthrax - an update. N Engl J Med. 2001;345:1621–6.

    Article  CAS  PubMed  Google Scholar 

  78. Lawrence RM, Lawrence RA. Breast milk and infection. Clin Perinatol. 2004;31:501–28.

    Article  PubMed  Google Scholar 

  79. Meaney-Delman D, Zotti ME, Creanga AA, et al. Special considerations for prophylaxis for and treatment of anthrax in pregnant and postpartum women. Emerg Infect Dis. 2014;20(2):e130611.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lawrence RM. Tranmission of infectious diseases through breast milk and breastfeeding. In: Lawrence RA, Lawrence RM, Noble L, Rosen-Carole C, Stuebe AM, editors. Breastfeeding: a guide for the medical profession. 9th ed. Philadelphia, PA: Elsevier; 2021. p. 393–456.

    Google Scholar 

  81. Bradley JS, Peacock G, Krug SE, et al. AAP Committee on Infectious Diseases and Disaster Preparedness Advisory Council. Pediatric anthrax clinical management. Pediatrics. 2014;133:e1411–36.

    Article  PubMed  Google Scholar 

  82. American Academy of Pediatrics. Brucellosis. In: Kimberlin DW, Barnett ED, Lynfield R, Sawyer MH, editors. Red Book: 2021-2024 Report of the Committee on Infectious Diseases. 32nd ed. Itasca, IL: American Academy of Pediatrics; 2021. p. 238–40.

    Google Scholar 

  83. Dadar M, Shahali Y, Alamian S. Isolation of Brucella melitensis biovar 1 from human milk confirms breastfeeding as a possible route for infant infection. Microb Pathog. 2021;157:104958.

    Article  CAS  PubMed  Google Scholar 

  84. Celebi G, Külah C, Kiliç S, Ustündağ G. Asymptomatic Brucella bacteraemia and isolation of Brucella melitensis biovar 3 from human breast milk. Scand J Infect Dis. 2007;39:205–8.

    Article  PubMed  Google Scholar 

  85. Al-Mafada SM, Al-Eissa YA, Saeed ES, Kambal AM. Isolation of Brucella melitensis from human milk. J Infect. 1993;26:346–8.

    Article  CAS  PubMed  Google Scholar 

  86. Tikare NV, Mantur BG, Bidari LH. Brucellar meningitis in an infant - evidence for human breast milk transmission. J Trop Pediatr. 2008;54:272–4.

    Article  PubMed  Google Scholar 

  87. Nemenqani D, Yaqoob N, Khoja H. Breast brucellosis in Taif, Saudi Arabia: cluster of six cases with emphasis on FNA evaluation. J Infect Dev Ctries. 2009;3:255–9.

    Article  PubMed  Google Scholar 

  88. Hammerschlag MR, Kohlhoff SA. Chlamydia infections. In: Feigin RD, Cherry JD, Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ, editors. Feigin and Cherry’s textbook of pediatric infectious diseases. 8th ed. Philadelphia, PA: Elsevier; 2019. p. 1952–62.

    Google Scholar 

  89. Skaug K, Otnaess AB, Orstavik I, Jerve F. Chlamydial secretory IgA antibodies in human milk. Acta Pathol Microbiol Immunol Scand C. 1982;90:21–5.

    CAS  PubMed  Google Scholar 

  90. Jandová M, Měřička P, Fišerová M, et al. Quantitative risk assessment of Bacillus cereus growth during the warming of thawed pasteurized human banked milk using a predictive mathematical model. Foods. 2022;11(7):1037.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lees EA, Miyajima F, Pirmohamed M, Carrol ED. The role of Clostridium difficile in the paediatric and neonatal gut - a narrative review. Eur J Clin Microbiol Infect Dis. 2016;35:1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lawrence RM. Precautions and breastfeeding recommendations for selected maternal infections. In: Lawrence RA, Lawrence RM, Noble L, Rosen-Carole C, Stuebe AM, editors. Breastfeeding: a guide for the medical profession. 9th ed. Philadelphia, PA: Elsevier; 2021. p. 738–53.

    Google Scholar 

  93. Stechenberg BW. Diphtheria. In: Feigin RD, Cherry JD, Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ, editors. Feigin and Cherry’s textbook of pediatric infectious diseases. 8th ed. Philadelphia, PA: Elsevier; 2019. p. 931–8.

    Google Scholar 

  94. Wahl B, O’Brien KL, Greenbaum A, et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000-15. Lancet Glob Health. 2018;6:e744.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hokama T, Sakamoto R, Yara A, Asato Y, Takamine F, Itokazu K. Incidence of Haemophilus influenzae in the throats of healthy infants with different feeding methods. Pediatr Int. 1999;41:277–80.

    Article  CAS  PubMed  Google Scholar 

  96. American Academy of Pediatrics. Haemophilus influenzae infections. In: Kimberlin DW, Barnett ED, Lynfield R, Sawyer MH, editors. Red Book: 2021-2024 Report of the Committee on Infectious Diseases. 32nd ed. Itasca, IL: American Academy of Pediatrics; 2021. p. 345–54.

    Google Scholar 

  97. Xing F, Lo SKF, Lau SKP, Woo PCY. Listeriosis in a metropolitan hospital: is targeted therapy a risk factor for infection? Front Med (Lausanne). 2022;9:888038.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Charlier C, Perrodeau É, Leclercq A, et al. Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study. Lancet Infect Dis. 2017;17:510.

    Article  PubMed  Google Scholar 

  99. Malik SV, Barbuddhe SB, Chaudhari SP. Listeria infections in humans and animals in the Indian subcontinent: a review. Trop Anim Health Prod. 2002;34:359–81.

    Article  CAS  PubMed  Google Scholar 

  100. Lai BY, Yu BW, Chu AJ, et al. Risk factors for lactation mastitis in China: a systematic review and meta-analysis. PLoS One. 2021;16(5):e0251182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Angelopoulou A, Field D, Ryan CA, Stanton C, Hill C, Ross RP. The microbiology and treatment of human mastitis. Med Microbiol Immunol. 2018;207:83–94.

    Article  PubMed  Google Scholar 

  102. Crepinsek MA, Taylor EA, Michener K, Stewart F. Interventions for preventing mastitis after childbirth. Cochrane Database Syst Rev. 2020;9(9):CD007239.

    PubMed  Google Scholar 

  103. Cruz AT. Leprosy and Buruli ulcer: the major cutaneous mycobacterioses. In: Feigin RD, Cherry JD, Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ, editors. Feigin and Cherry’s textbook of pediatric infectious diseases. 8th ed. Philadelphia, PA: Elsevier; 2019. p. 995–1012.

    Google Scholar 

  104. Ozturk Z, Tatliparmak A. Leprosy treatment during pregnancy and breastfeeding: a case report and brief review of literature. Dermatol Ther. 2017;30(1) https://doi.org/10.1111/dth.12414.

  105. World Health Organisation. Global tuberculosis report 2022. Geneva: World Health Organisation. 2022:1–51. https://www.who.int/teams/global-tuberculosis-programme/tb-reports. Accessed 3 Mar 2023.

  106. Li C, Liu L, Tao Y. Diagnosis and treatment of congenital tuberculosis: a systematic review of 92 cases. Orphanet J Rare Dis. 2019;14(1):131.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Miele K, Bamrah Morris S, Tepper NK. Tuberculosis in pregnancy. Obstet Gynecol. 2020;135:1444–53.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gould JM, Aronoff SC. Tuberculosis and pregnancy - maternal, fetal, and neonatal considerations. Microbiol Spectr. 2016;4:1–6.

    Article  Google Scholar 

  109. Pop LG, Bacalbasa N, Suciu ID, Ionescu P, Toader OD. Tuberculosis in pregnancy. J Med Life. 2021;14:165–9.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lee LH, Le Vea CM, Graman PS. Congenital tuberculosis in a neonatal intensive care unit: case report, epidemiologic investigation and management of exposures. Clin Infect Dis. 1998;27:474–7.

    Article  CAS  PubMed  Google Scholar 

  111. American Academy of Pediatrics. Tuberculosis. In: Kimberlin DW, Barnett ED, Lynfield R, Sawyer MH, editors. Red Book: 2021-2024 Report of the Committee on Infectious Diseases. 32nd ed. Itasca, IL: American Academy of Pediatrics; 2021. p. 786–814.

    Google Scholar 

  112. Snider DE Jr, Powell KE. Should women taking antituberculosis drugs breastfeed? Arch Intern Med. 1984;144:589–90.

    Article  PubMed  Google Scholar 

  113. Scott MJ Jr, Scott MJ Sr. Primary cutaneous Neisseria gonorrhoeae infections. Arch Dermatol. 1982;118:351.

    Article  PubMed  Google Scholar 

  114. American Academy of Pediatrics. Gonococcal infections. In: Kimberlin DW, Barnett ED, Lynfield R, Sawyer MH, editors. Red Book: 2021-2024 Report of the Committee on Infectious Diseases. 32nd ed. Itasca, IL: American Academy of Pediatrics; 2021. p. 338–44.

    Google Scholar 

  115. Gardner P. Clinical practice. Prevention of meningococcal disease. N Engl J Med. 2006;355:1466–73.

    Article  CAS  PubMed  Google Scholar 

  116. Cohn AC, MacNeil JR, Clark TA, et al. Prevention and control of meningococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2013; 62:RR-2:1–28.

    Google Scholar 

  117. Cherry JD, Heininger U. Pertussis and other Bordetella infections. In: Feigin RD, Cherry JD, Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ, editors. Feigin and Cherry’s textbook of pediatric infectious diseases. 8th ed. Philadelphia, PA: Elsevier; 2019. p. 1159–77.

    Google Scholar 

  118. American Academy of Pediatrics. Pertussis. In: Kimberlin DW, Barnett ED, Lynfield R, Sawyer MH, editors. Red Book: 2021-2024 Report of the Committee on Infectious Diseases. 32nd ed. Itasca, IL: American Academy of Pediatrics; 2021. p. 578–89.

    Google Scholar 

  119. Havers FP, Moro PL, Hunter P, Hariri S, Bernstein H. Use of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccines: updated recommendations of the Advisory Committee on Immunization Practices - United States, 2019. MMWR Morb Mortal Wkly Rep. 2020;69(3):77–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Long SS, Edwards KM, Mertsola J. Bordotella pertussis (pertussis) and other Bordotella species. In: Long SS, Prober CG, Fischer M, Kimberlin DW, editors. Principles and practice of pediatric infectious diseases. 6th ed. Philadelphia, PA: Elsevier; 2023. p. 909–18.

    Chapter  Google Scholar 

  121. Thomsen I, Creech CB. Staphylococcus aureus. In: Long SS, Prober CG, Fischer M, Kimberlin DW, editors. Principles and practice of pediatric infectious diseases. 6th ed. Philadelphia, PA: Elsevier; 2023. p. 710–23.

    Chapter  Google Scholar 

  122. Chatzakis E, Scoulica E, Papageorgiou N, Maraki S, Samonis G, Galanakis E. Infant colonization by Staphylococcus aureus: role of maternal carriage. Eur J Clin Microbiol Infect Dis. 2011;30:1111–7.

    Article  CAS  PubMed  Google Scholar 

  123. Regev-Yochay G, Raz M, Carmeli Y, et al. Parental Staphylococcus aureus carriage is associated with staphylococcal carriage in young children. Pediatr Infect Dis J. 2009;28:960–5.

    Article  PubMed  Google Scholar 

  124. Katzman DK, Wald ER. Staphylococcal scalded skin syndrome in a breastfed infant. Pediatr Infect Dis J. 1987;6:295–6.

    Article  CAS  PubMed  Google Scholar 

  125. Karimi M, Eslami Z, Shamsi F, Moradi J, Ahmadi AY, Baghianimoghadam B. The effect of educational intervention on decreasing mothers’ expressed breast milk bacterial contamination whose infants are admitted to neonatal intensive care unit. J Res Health Sci. 2012;13:43–7.

    PubMed  Google Scholar 

  126. Edwards MS, Nizet V, Baker CJ. Group B Streptococcal Infections. In: Wilson CB, Nizet V, Maldonado YA, Remington JS, Klein JO, editors. Remington and Klein’s infectious diseases of the fetus and newborn infant. 8th ed. Philadelphia, PA: Elsevier; 2016. p. 411–56.

    Google Scholar 

  127. Bianchi-Jassir F, Seale AC, Kohli-Lynch M, et al. Preterm birth associated with Group B streptococcus maternal colonization worldwide: systematic review and meta-analyses. Clin Infect Dis. 2017;65(suppl_2):s133–42.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Seale AC, Bianchi-Jassir F, Russell NJ, et al. Estimates of the burden of Group B streptococcal disease worldwide for pregnant women, stillbirths, and children. Clin Infect Dis. 2017;65(suppl_2):s200–19.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Prevention of Group B streptococcal early-onset disease in newborns: ACOG Committee Opinion, Number 797. Obstet Gynecol. 2020;135:e51–72. [erratum: Obstet Gynecol. 2020;135:978–979].

    Google Scholar 

  130. Le Doare K, Bellis K, Faal A, et al. SIgA, TGF-β1, IL-10, and TNFα in colostrum are associated with infant Group B Streptococcus colonization. Front Immunol. 2017;8:1269.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Davanzo R, De Cunto A, Travan L, Bacolla G, Creti R, Demarini S. To feed or not to feed? case presentation and best practice guidance for human milk feeding and group B streptococcus in developed countries. J Hum Lact. 2013;29:452–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaba, Ö., Arısoy, A.E., Arısoy, E.S., Kaplan, S.L. (2023). Breastfeeding and Maternal Bacterial Infections. In: Şahin, Ö.N., Briana, D.D., Di Renzo, G.C. (eds) Breastfeeding and Metabolic Programming. Springer, Cham. https://doi.org/10.1007/978-3-031-33278-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33278-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33277-7

  • Online ISBN: 978-3-031-33278-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics