Skip to main content

The Evolution and Genomic Aspects of Milk

  • Chapter
  • First Online:
Breastfeeding and Metabolic Programming

Abstract

Lactation can be defined as a process by which milk is secreted in large amounts by mammary glands in order to nourish the organism’s offspring. It plays a key role in the reproductive strategy of mammals, so much so that the Linnaean classification that created the class Mammalia in 1758 did so on the basis of the ability to lactate, rather than on other features of anatomy shared by the group. Choosing lactation as the basis to categorize the group is reflective of the great significance lactation plays in nourishing the young of all mammalian species, including humans. Indeed, lactation is said to have created a unique nutritional environment in this group of organisms [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lefèvre CM, Sharp JA, Nicholas KR. Evolution of lactation: ancient origin and extreme adaptations of the lactation system. Annu Rev Genomics Hum Genet. 2010;11:219–38. https://doi.org/10.1146/annurev-genom-082509-141806.

    Article  CAS  PubMed  Google Scholar 

  2. Lemay DG, Lynn DJ, Martin WF, Neville MC, Casey TM, et al. The bovine lactation genome: insights into the evolution of mammalian milk. Genome Biol. 2009;10:R43.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lefèvre CM, Sharp JA, Nicholas KR. Characterization of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals. Reprod Fertil Dev. 2009;21:1015–27.

    Article  PubMed  Google Scholar 

  4. Andrechek ER, Mori S, Rempel RE, Chang JT, Nevins JR. Patterns of cell signaling pathway activation that characterize mammary development. Development. 2008;135:2403–13.

    Article  CAS  PubMed  Google Scholar 

  5. Lefèvre CM, Digby MR, Whitley JC, Strahm Y, Nicholas KR. Lactation transcriptomics in the Australian marsupial, Macropus eugenii: transcript sequencing and quantification. BMC Genomics. 2007;8:417.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bird PH, Hendry KA, Shaw DC, Wilde CJ, Nicholas KR. Progressive changes in milk protein gene expression and prolactin binding during lactation in the tammar wallaby (Macropus eugenii). J Mol Endocrinol. 1994;13:117–25.

    Article  CAS  PubMed  Google Scholar 

  7. Oftedal OT. The origin of lactation as a water source for parchment-shelled eggs. J Mammary Gland Biol Neoplasia. 2002;7:253–66.

    Article  PubMed  Google Scholar 

  8. Sosa-Castillo E, Rodríguez-Cruz M, Moltó-Puigmartí C. Genomics of lactation: role of nutrigenomics and nutrigenetics in the fatty acid composition of human milk. Br J Nutr. 2017;118(3):161–8. https://doi.org/10.1017/S0007114517001854.

    Article  CAS  PubMed  Google Scholar 

  9. World Health Organization. Exclusive breastfeeding; 2011. http://www.who.int/nutrition/topics/exclusivebreastfeeding/en/. Accessed Jan 2022.

  10. Hill DR, Newburg DS. Clinical applications of bio-active milk components. Nutr Rev. 2015;73:463–76.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin N Am. 2013;60:49–74.

    Article  Google Scholar 

  12. Bachour P, Yafawi R, Jaber F, et al. Effects of smoking, mother’s age, body mass index, and parity number on lipid, protein, and secretory immunoglobulin A concentrations of human milk. Breastfeed Med. 2012;7:179–88.

    Article  PubMed  Google Scholar 

  13. Verduci E, Banderali G, Barberi S, et al. Epigenetic effects of human breast milk. Nutrients. 2014;24:1711–24.

    Article  Google Scholar 

  14. Madsen O. Mammals (Mammalia). In: Kumar SB, editor. The Timetree of life. New York: Oxford Univ. Press; 2009. p. 459–61.

    Google Scholar 

  15. Richard C, Lewis ED, Field CJ. Evidence for the essentiality of arachidonic and docosahexaenoic acid in thepostnatal maternal and infant diet for the development of the infant’s immune system early in life. Appl Physiol Nutr Metab. 2016;41:461–75.

    Article  CAS  PubMed  Google Scholar 

  16. Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: a review on its composition and bio- activity. Early Hum Dev. 2015;91:629–35.

    Article  CAS  PubMed  Google Scholar 

  17. Mennitti LV, Oliveira JL, Morais CA, et al. Type of fatty acids in maternal diets during pregnancy and/or lactation and metabolic consequences of the offspring. J Nutr Biochem. 2015;26:99–111.

    Article  CAS  PubMed  Google Scholar 

  18. Fenech M, El-Sohemy A, Cahill L, et al. Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. J Nutrigenet Nutrigenomics. 2011;4:69–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Arendt LM, Kuperwasser C. Form and function: how estrogen and progesterone regulate the mammary epithelial hierarchy. J Mammary Gland Biol Neoplasia. 2015;20:9–25.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Riordan J. Anatomy and physiology of lactation. In: Wambach K, Riordan J, editors. Breastfeeding and human lactation. 4th ed. Boston, MA: Jones & Bartlett Learning; 2010. p. 79–86.

    Google Scholar 

  21. Golinelli LP, Del Aguila EM, Flosi Paschoalin VM, et al. Functional aspect of colostrum and whey proteins in human milk. J Hum Nutr Food Sci. 2014;2:1035.

    Google Scholar 

  22. Ibeagha-Awemu EM, Li R, Ammah AA, et al. Transcriptome adaptation of the bovine mammary gland to diets rich in unsaturated fatty acids shows greater impact of linseed oil over safflower oil on gene expression and metabolic pathways. BMC Genomics. 2016;17:104.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Capel F, Rolland-Valognes G, Dacquet C, et al. Analysis of sterol-regulatory element-binding protein 1c target genes in mouse liver during aging and high-fat diet. J Nutrigenet Nutrigenomics. 2013;6:107–22.

    CAS  PubMed  Google Scholar 

  24. Neschen S, Morino K, Dong J, et al. N-3 fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator–activated receptor-alpha–dependent manner. Diabetes. 2007;56:1034–41.

    Article  CAS  PubMed  Google Scholar 

  25. Jump DB, Tripathy S, Depner CM. Fatty acid-regulated transcription factors in the liver. Annu Rev Nutr. 2013;33:249–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez-Cruz M, Tovar AR, Palacios-Gonzalez B, et al. Synthesis of long-chain polyunsaturated fatty acids in lactating mammary gland: role of Delta5 and Delta6 desaturases, SREBP-1, PPAR alpha, and PGC-1. J Lipid Res. 2006;47:553–60.

    Article  CAS  PubMed  Google Scholar 

  27. Schennink A, Stoop WM, Visker MHPW, et al. Short communication: genome-wide scan for bovine milk-fat composition. II. Quantitative trait loci for long-chain fatty acids. J Dairy Sci. 2009;92:4676–82.

    Article  CAS  PubMed  Google Scholar 

  28. Stoop WM, Schennink A, Visker MH, et al. Genome-wide scan for bovine milk-fat composition. I. Quantitative trait loci for short- and medium-chain fatty acids. J Dairy Sci. 2009;92:4664–75.

    Article  CAS  PubMed  Google Scholar 

  29. Mele M, Conte G, Castiglioni B, et al. Stearoyl-coenzyme a desaturase gene polymorphism and milk fatty acid composition in Italian Holsteins. J Dairy Sci. 2007;90:4458–65.

    Article  CAS  PubMed  Google Scholar 

  30. Schennink A, Heck JM, Bovenhuis H, et al. Milk fatty acid unsaturation: genetic parameters and effects of stearoyl-CoA desaturase (SCD1) and acyl CoA: diacylglycerol acyltransferase 1 (DGAT1). J Dairy Sci. 2008;91:2135–43.

    Article  CAS  PubMed  Google Scholar 

  31. Conte G, Mele M, Chessa S, et al. Diacylglycerol acyl-transferase 1, stearoyl-CoA desaturase 1, and sterol regulatory element binding protein 1 gene polymorphisms and milk fatty acid composition in Italian Brown cattle. J Dairy Sci. 2010;93:753–63.

    Article  CAS  PubMed  Google Scholar 

  32. Nafikov RA, Schoonmaker JP, Korn KT, et al. Sterol regulatory element binding transcription factor 1 (SREBF1) polymorphism and milk fatty acid composition. J Dairy Sci. 2013;96:2605–16.

    Article  CAS  PubMed  Google Scholar 

  33. Marchitelli C, Contarini G, De Matteis G, et al. Milk fatty acid variability: effect of some candidate genes involved in lipid synthesis. J Dairy Res. 2013;80:165–73.

    Article  CAS  PubMed  Google Scholar 

  34. Nafikov RA, Schoonmaker JP, Korn KT, et al. Poly-morphisms in lipogenic genes and milk fatty acid composition in Holstein dairy cattle. Genomics. 2014;104:572–81.

    Article  CAS  PubMed  Google Scholar 

  35. Tăbăran A, Balteanu VA, Gal E, et al. Influence of DGAT1 K232A polymorphism on milk fat percentage and fatty acid profiles in Romanian Holstein cattle. Anim Biotechnol. 2015;26:105–11.

    Article  PubMed  Google Scholar 

  36. Ashes JR, Gulati SK, Scott TW. Potential to alter the content and composition of milk fat through nutrition. J Dairy Sci. 1997;80:2204–12.

    Article  CAS  PubMed  Google Scholar 

  37. Lock AL, Bauman DE. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids. 2004;39:1197–206.

    Article  CAS  PubMed  Google Scholar 

  38. Lanier JS, Corl BA. Challenges in enriching milk fat with polyunsaturated fatty acids. J Anim Sci Biotechnol. 2015;6:26.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schaeffer L, Gohlke H, Müller M, et al. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet. 2006;15:1745–56.

    Article  CAS  PubMed  Google Scholar 

  40. Malerba G, Schaeffer L, Xumerle L, et al. SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids. 2008;43:289–99.

    Article  CAS  PubMed  Google Scholar 

  41. Martinelli N, Girelli D, Malerba G, et al. FADS geno- types and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am J Clin Nutr. 2008;88:941–9.

    Article  CAS  PubMed  Google Scholar 

  42. Rzehak P, Heinrich J, Klopp N, et al. Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. Br J Nutr. 2009;101:20–6.

    Article  CAS  PubMed  Google Scholar 

  43. Baylin A, Ruiz-Narvaez E, Kraft P, et al. Alpha-linolenic acid, Delta6-desaturase gene polymorphism, and the risk of nonfatal myocardial infarction. Am J Clin Nutr. 2007;85:554–60.

    Article  CAS  PubMed  Google Scholar 

  44. Xie L, Innis SM. Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J Nutr. 2008;138:2222–8.

    Article  CAS  PubMed  Google Scholar 

  45. Moltó-Puigmartí C, Plat J, Mensink RP, et al. FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. Am J Clin Nutr. 2010;91:1368–76.

    Article  PubMed  Google Scholar 

  46. Morales E, Bustamante M, González JR, et al. Genetic variants of the FADS gene cluster and ELOVL gene family colostrums LC-PUFA levels, breastfeeding, and child cognition. PLoS One. 2011;6:e17181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Şahin, Ö.N., Di Renzo, G.C. (2023). The Evolution and Genomic Aspects of Milk. In: Şahin, Ö.N., Briana, D.D., Di Renzo, G.C. (eds) Breastfeeding and Metabolic Programming. Springer, Cham. https://doi.org/10.1007/978-3-031-33278-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33278-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33277-7

  • Online ISBN: 978-3-031-33278-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics