Skip to main content

Completely Distinguishable Automata and the Set of Synchronizing Words

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13911))

Included in the following conference series:

  • 322 Accesses

Abstract

An n-state automaton is synchronizing if it can be reset, or synchronized, into a definite state. The set of input words that synchronize the automaton is acceptable by an automaton of size \(2^n - n\). Shortest paths in such an accepting automaton correspond to shortest synchronizing words. Here, we introduce completely distinguishable automata, a subclass of the synchronizing automata. Being completely distinguishable is a necessary condition for a minimal automaton for the set of synchronizing words to have size \(2^n - n\). In fact, as we show, it has size \(2^n - n\) if and only if the automaton is completely distinguishable and has a completely reachable subautomaton that only missed at most one state. We give different characterizations of completely distinguishable automata. Then we relate these notions to graph-theoretical constructions and investigate the subclass of automata with simple idempotents (SI-automata). We show that for these automata the properties of synchronizability, complete distinguishability and complete reachability and the minimal automaton for the set of synchronizing word having \(2^n - n\) states are equivalent when the transformation monoid contains a transitive permutation group. A related result from the literature about SI-automata is wrong, we discuss and correct that mistake here. Lastly, using the results on SI-automata, we show that deciding complete reachability, complete distinguishability and whether the minimal automaton for the set of synchronizing words has \(2^n - n\) states are all \(\textsf{NL}\)-hard problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Araújo, J., Cameron, P.J., Steinberg, B.: Between primitive and 2-transitive: synchronization and its friends. EMS Surv. Math. Sci. 4(2), 101–184 (2017). http://www.ems-ph.org/doi/10.4171/EMSS

  2. Babai, L.: Automorphism Groups, Isomorphism, pp. 1447–1540. Reconstruction. MIT Press, Cambridge, MA, USA (1996)

    MATH  Google Scholar 

  3. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata, Encyclopedia of mathematics and its applications, vol. 129. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  4. Bondar, E.A., Volkov, M.V.: Completely reachable automata. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 1–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41114-9_1

    Chapter  Google Scholar 

  5. Bondar, E.A., Volkov, M.V.: A characterization of completely reachable automata. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 145–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8_12

    Chapter  Google Scholar 

  6. Bondar, E.A., David, Volkov, M.V.: Completely reachable automata: an interplay between automata, graphs, and trees. CoRR abs/2201.05075 (2022). https://arxiv.org/abs/2201.05075. (accepted for publication in Int. J. Found. Comput. Sci.)

  7. Cameron, P.J., Castillo-Ramirez, A., Gadouleau, M., Mitchell, J.D.: Lengths of words in transformation semigroups generated by digraphs. J. Algebraic Combin. 45(1), 149–170 (2016). https://doi.org/10.1007/s10801-016-0703-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Casas, D., Volkov, M.V.: Binary completely reachable automata. In: Castañeda, A., Rodríguez-Henríquez, F. (eds.) LATIN 2022: Theoretical Informatics - 15th Latin American Symposium, Guanajuato, Mexico, 7–11 November 2022, Proceedings. Lecture Notes in Computer Science, vol. 13568, pp. 345–358. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20624-5_21

  9. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikálny časopis 14(3), 208–216 (1964). (Translation: A Note on Homogeneous Experiments with Finite Automata. Journal of Automata, Languages and Combinatorics 24 (2019) 2–4, 123–132)

    Google Scholar 

  10. Cerný, J., Pirická, A., Rosenauerová, B.: On directable automata. Kybernetika 7(4), 289–298 (1971). http://www.kybernetika.cz/content/1971/4/289

  11. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3), 500–510 (1990). https://doi.org/10.1137/0219033

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferens, R., Szykuła, M.: Completely reachable automata: A polynomial solution and quadratic bounds for the subset reachability problem. CoRR abs/2208.05956 (2022). 10.48550/arXiv. 2208.05956, https://doi.org/10.48550/arXiv.2208.05956

  13. Fernau, H., Gusev, V.V., Hoffmann, S., Holzer, M., Volkov, M.V., Wolf, P.: Computational complexity of synchronization under regular constraints. In: Rossmanith, P., Heggernes, P., Katoen, J. (eds.) 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, 26–30 August 2019, Aachen, Germany. LIPIcs, vol. 138, pp. 1–14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.MFCS.2019.63

  14. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. J. Automata, Lang. Comb. 21(4), 251–310 (2017). https://doi.org/10.25596/jalc-2016-251

  15. Gawrychowski, P., Straszak, D.: Strong inapproximability of the shortest reset word. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 243–255. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48057-1_19

    Chapter  MATH  Google Scholar 

  16. Goldberg, K.Y.: Orienting polygonal parts without sensors. Algorithmica 10(2–4), 210–225 (1993). https://doi.org/10.1007/BF01891840

    Article  MathSciNet  MATH  Google Scholar 

  17. Gonze, F., Jungers, R.M.: Hardly reachable subsets and completely reachable automata with 1-deficient words. J. Automata, Lang. Comb. 24(2–4), 321–342 (2019). https://doi.org/10.25596/jalc-2019-321

  18. Hamidoune, Y.O.: Quelques problèmes de connexité dans les graphes orientés. J. Comb. Theory, Ser. B 30(1), 1–10 (1981). https://doi.org/10.1016/0095-8956(81)90085-X

  19. Hoffmann, S.: Completely reachable automata, primitive groups and the state complexity of the set of synchronizing words. In: Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2021. LNCS, vol. 12638, pp. 305–317. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68195-1_24

    Chapter  MATH  Google Scholar 

  20. Hoffmann, S.: Constrained synchronization and commutativity. Theor. Comput. Sci. 890, 147–170 (2021). https://doi.org/10.1016/j.tcs.2021.08.030

  21. Hoffmann, S.: State complexity of the set of synchronizing words for circular automata and automata over binary alphabets. In: Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2021. LNCS, vol. 12638, pp. 318–330. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68195-1_25

    Chapter  MATH  Google Scholar 

  22. Hoffmann, S.: Sync-maximal permutation groups equal primitive permutation groups. In: Han, Y., Ko, S. (eds.) Descriptional Complexity of Formal Systems - 23rd IFIP WG 1.02 International Conference, DCFS 2021, Virtual Event, 5 September 2021, Proceedings. Lecture Notes in Computer Science, vol. 13037, pp. 38–50. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93489-7_4

  23. Hoffmann, S.: Reset complexity and completely reachable automata with simple idempotents. In: Han, Y., Vaszil, G. (eds.) Descriptional Complexity of Formal Systems - 24rd IFIP WG 1.02 International Conference, DCFS 2022, 29–31 August 2022, Debrecen, Hungary, Proceedings. Lecture Notes in Computer Science, vol. 13439, pp. 85–99. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13257-5_7

  24. Holzer, M., Jakobi, S.: On the computational complexity of problems related to distinguishability sets. Inf. Comput. 259(2), 225–236 (2018). https://doi.org/10.1016/j.ic.2017.09.003

    Article  MathSciNet  MATH  Google Scholar 

  25. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Publishing Company, Boston (1979)

    MATH  Google Scholar 

  26. Jones, N.D.: Space-bounded reducibility among combinatorial problems. J. Comput. Syst. Sci. 11(1), 68–85 (1975). https://doi.org/10.1016/S0022-0000(75)80050-X

    Article  MathSciNet  MATH  Google Scholar 

  27. Jürgensen, H.: Synchronization. Inf. Comput. 206(9–10), 1033–1044 (2008). https://doi.org/10.1016/j.ic.2008.03.005

    Article  MATH  Google Scholar 

  28. Maslennikova, M.I.: Reset complexity of ideal languages over a binary alphabet. Int. J. Found. Comput. Sci. 30(6–7), 1177–1196 (2019). https://doi.org/10.1142/S0129054119400343

    Article  MathSciNet  MATH  Google Scholar 

  29. Natarajan, B.K.: An algorithmic approach to the automated design of parts Orienters. In: 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27–29 October 1986. pp. 132–142. IEEE Computer Society (1986). https://doi.org/10.1109/SFCS.1986.5

  30. Neumann, P.M.: The Mathematical Writings of Évariste Galois. European Mathematical Society, Helsinki, Heritage of European Mathematics (2011). https://doi.org/10.4171/104

  31. Olschewski, J., Ummels, M.: The complexity of finding reset words in finite automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 568–579. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2_50

    Chapter  MATH  Google Scholar 

  32. Rystsov, I.K.: On minimizing the length of synchronizing words for finite automata. In: Theory of Designing of Computing Systems, pp. 75–82. Institute of Cybernetics of Ukrainian Acad. Sci. (1980). (in Russian)

    Google Scholar 

  33. Rystsov, I.K.: Estimation of the length of reset words for automata with simple idempotents. Cybern. Syst. Anal. 36(3), 339–344 (2000). https://doi.org/10.1007/BF02732984

    Article  MathSciNet  MATH  Google Scholar 

  34. Rystsov, I.K.: Cerny’s conjecture for automata with simple idempotents. Cybern. Syst. Anal. 58(1), 1–7 (2022). https://doi.org/10.1007/s10559-022-00428-3

  35. Sandberg, S.: 1 homing and synchronizing sequences. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005). https://doi.org/10.1007/11498490_2

    Chapter  Google Scholar 

  36. Starke, P.H.: Eine Bemerkung über homogene Experimente. Elektronische Informationverarbeitung und Kybernetik (later Journal of Information Processing and Cybernetics) 2(2), 61–82 (1966), (Translation: A remark about homogeneous experiments. Journal of Automata, Languages and Combinatorics 24 (2019) 2–4, 133–237)

    Google Scholar 

  37. Trahtman, A.N.: The road coloring problem. Israel J. Math. 172(1), 51–60 (2009). https://doi.org/10.1007/s11856-009-0062-5

    Article  MathSciNet  MATH  Google Scholar 

  38. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4_4

    Chapter  Google Scholar 

  39. Volkov, M.V.: Preface. J. Automata, Lang. Comb. 24(2–4), 119–121 (2019). https://doi.org/10.25596/jalc-2019-119

  40. Volkov, M.V., Kari, J.: Černý’s conjecture and the road colouring problem. In: Pin, J.É. (ed.) Handbook of Automata Theory, Volume I, pp. 525–565. European Mathematical Society Publishing House (2021)

    Google Scholar 

  41. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994). https://doi.org/10.1016/0304-3975(92)00011-F

Download references

Acknowledgement

I am thankful to an anonymous referee of a previous version for providing one example from Remark 1 and for having some good suggestions leading to Theorem 2.2 (Item  6). I also thank the referees of the present version for careful reading and identifying some typos. Furthermore, I thank Marek Szykuła & Adam Zyzik for contacting me and telling me about their \(\textsf{PSPACE}\)-completeness result.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoffmann, S. (2023). Completely Distinguishable Automata and the Set of Synchronizing Words. In: Drewes, F., Volkov, M. (eds) Developments in Language Theory. DLT 2023. Lecture Notes in Computer Science, vol 13911. Springer, Cham. https://doi.org/10.1007/978-3-031-33264-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33264-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33263-0

  • Online ISBN: 978-3-031-33264-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics