Skip to main content

Abstract

Higher availability of grand granulated blast furnace slag compared to coal fly ash has attributed lots of attention to this supplementary cementitious material in recent years, especially with respect to applications in infrastructure. Therefore, further research on long term performance of slag containing binders in chloride containing environments is promoted.

In this article chloride binding in a high slag containing composite binder (70% substitution) with respect to the changes in structure of CSH gel prior and after exposure to chlorides and its effect on chemical and physical chloride binding is accounted for. The changes in the structure of CSH are accounted by NMR analysis and the effect of these changes on chloride binding is addressed through adsorption tests. The results are compared with a ternary binder of cement-silica fume-metakaolin, given the relatively similar chemical composition between these two composite binders, as well as a reference Portland cement binder.

The results infer that the slag containing binder exhibits higher chloride binding capacity compared to the metakaolin-silica fume containing. Moreover, a higher share of chemically bound chloride (meaning a lower physical binding) in SCM containing binders is foreseen compared to pure Portland cement system, due to the increased C(-A)-S-H chain length and Al/Si molar ratio in these binders. Furthermore, it is shown that exposure to NaCl causes a higher share of chemically bound chlorides compared to the CaCl2 exposure while the total bound chloride content increases upon exposure to CaCl2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones, M.R., et al.: Studies using 27Al MAS NMR of AFm and AFt phases and the formation of Friedel’s salt. Cem. Concr. Res. 33, 177–182 (2003)

    Article  Google Scholar 

  2. Zibara, H., Hooton, R.D., Thomas, M.D.A., Stanish, K.: Influence of the C/S and C/A ratios of hydration products on the chloride ion binding capacity of lime-SF and lime-MK mixtures. Cem. Concr. Res. 38, 422–426 (2008)

    Article  Google Scholar 

  3. Beaudoin, J.J., Ramachandran, V.S., Feldman, R.F.: Interaction of chloride and C S H. Cem. Concr. Res. 20, 875–883 (1990)

    Article  Google Scholar 

  4. Tang, L., Nilsson, L.-O.: Chloride binding capacity and binding isotherms of OPC pastes and mortars. Cem. Concr. Res. 23, 247–253 (1993)

    Article  Google Scholar 

  5. Plusquellec, G., Nonat, A.: Interactions between calcium silicate hydrate (C-S-H) and calcium chloride, bromide and nitrate. Cem. Concr. Res. 90, 89–96 (2016)

    Article  Google Scholar 

  6. Wowra, O., Setzer, M.J.: Sorption of chlorides on hydrated cements and C3A pastes, Frost Resistance of Concrete, E& FN Spon (1997)

    Google Scholar 

  7. Balonis, M.: Thermodynamic modelling of temperature effects on the mineralogy of Portland cement systems containing chloride. Cem. Concr. Res. 120, 66–76 (2019)

    Article  Google Scholar 

  8. Georget, F., Bénier, C., Wilson, W., Scrivener, K.L.: Chloride sorption by C-S-H quantified by SEM-EDX image analysis. Cem. Concr. Res. 152, 106656 (2022)

    Article  Google Scholar 

  9. De Weerdt, K., Colombo, A., Coppola, L., Justnes, H., Geiker, M.R.: Impact of the associated cation on chloride binding of Portland cement paste. Cem. Concr. Res. 68, 196–202 (2015)

    Article  Google Scholar 

  10. Shi, Z., et al.: Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends. Cem. Concr. Res. 95, 205–216 (2017)

    Article  Google Scholar 

  11. Zhu, Q., Jiang, L., Chen, Y., Xu, J., Mo, L.: Effect of chloride salt type on chloride binding behavior of concrete. Constr. Build. Mater. 37, 512–517 (2012)

    Article  Google Scholar 

  12. Tritthart, J.: Chloride binding in cement II. The influence of the hydroxide concentration in the pore solution of hardened cement paste on chloride binding. Cem. Concr. Res. 19, 683–691 (1989)

    Article  Google Scholar 

  13. Zhou, Y., Hou, D., Jiang, J., Liu, L., She, W., Yu, J.: Experimental and molecular dynamics studies on the transport and adsorption of chloride ions in the nano-pores of calcium silicate phase: the influence of calcium to silicate ratios. Microporous Mesoporous Mater. 255, 23–35 (2018)

    Article  Google Scholar 

  14. Wilson, W., Gonthier, J.N., Georget, F., Scrivener, K.L.: Insights on chemical and physical chloride binding in blended cement pastes. Cem. Concr. Res. 156, 106747 (2022)

    Article  Google Scholar 

  15. Avet, F., Scrivener, K.: Influence of pH on the chloride binding capacity of Limestone Calcined Clay Cements (LC3). Cem. Concr. Res. 131, 106031 (2020)

    Article  Google Scholar 

  16. Shi, Z., et al.: Friedel’s salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution. Cem. Concr. Compos. 78, 73–83 (2017)

    Article  Google Scholar 

  17. Thomas, M., Hooton, R., Scott, A., Zibara, H.: The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cem. Concr. Res. 42, 1–7 (2012)

    Article  Google Scholar 

  18. Zibara, H.: Binding of External Chlorides by Cement Pastes [microform]. University of Toronto (2001)

    Google Scholar 

  19. Maraghechi, H., Avet, F., Wong, H., Kamyab, H., Scrivener, K.: Performance of Limestone Calcined Clay Cement (LC3) with various kaolinite contents with respect to chloride transport. Mater. Struct. 51, 125 (2018)

    Article  Google Scholar 

  20. Balonis, M.: The Influence of Inorganic Chemical Accelerators and Corrosion Inhibitors on the Mineralogy of Hydrated Portland Cement Systmes. University of Aberdeen, Aberdeen (2010)

    Google Scholar 

  21. Balonis, M., Lothenbach, B., Le Saout, G., Glasser, F.P.: Impact of chloride on the mineralogy of hydrated Portland cement systems. Cem. Concr. Res. 40, 1009–1022 (2010)

    Article  Google Scholar 

  22. Babaahmadi, A., Machner, A., Kunther, W., Figueira, J., Hemstad, P., De Weerdt, K.: Chloride binding in Portland composite cements containing metakaolin and silica fume. Cem. Concr. Res. 161, 106924 (2022)

    Article  Google Scholar 

  23. Richardson, I.G., Brough, A.R., Groves, G.W., Dobson, C.M.: The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase. Cem. Concr. Res. 24, 813–829 (1994)

    Article  Google Scholar 

  24. Richardson, I.G., Groves, G.W.: The structure of the calcium silicate hydrate phases present in hardened pastes of white Portland cement/blast-furnace slag blends. J. Mater. Sci. 32(18), 4793–4802 (1997). https://doi.org/10.1023/A:1018639232570

    Article  Google Scholar 

  25. Kulik, D., et al.: GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput Geosci 17, 1–24 (2013)

    MATH  Google Scholar 

  26. Wagner, T., Kulik, D.A., Hingerl, F.F., Dmytrievava, S.V.: Gem-selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models. Can. Mineral. 50, 1173–1195 (2012)

    Article  Google Scholar 

  27. Lothenbach, B., et al.: Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem. Concr. Res. 115, 472–506 (2019)

    Article  Google Scholar 

  28. Machner, A., Zajac, M., Ben Haha, M., Kjellsen, K.O., Geiker, M.R., De Weerdt, K.: Chloride-binding capacity of hydrotalcite in cement pastes containing dolomite and metakaolin. Cement and Concrete Research 107, 163–181 (2018)

    Article  Google Scholar 

  29. Arya, C., Buenfeld, N.R., Newman, J.B.: Factors influencing chloride-binding in concrete. Cem. Concr. Res. 20, 291–300 (1990)

    Article  Google Scholar 

  30. Delagrave, A., Marchand, J., Ollivier, J.-P., Julien, S., Hazrati, K.: Chloride binding capacity of various hydrated cement paste systems. Adv. Cem. Based Mater. 6, 28–35 (1997)

    Article  Google Scholar 

  31. De Weerdt, K., Orsáková, D., Geiker, M.R.: The impact of sulphate and magnesium on chloride binding in Portland cement paste. Cem. Concr. Res. 65, 30–40 (2014)

    Article  Google Scholar 

  32. Dhir, R., El-Mohr, M., Dyer, T.: Chloride binding in GGBS concrete. Cem. Concr. Res. 26, 1767–1773 (1996)

    Article  Google Scholar 

  33. Luo, R., Cai, Y., Wang, C., Huang, X.: Study of chloride binding and diffusion in GGBS concrete. Cem. Concr. Res. 33, 1–7 (2003)

    Article  Google Scholar 

  34. Otieno, M., Beushausen, H., Alexander, M.: Effect of chemical composition of slag on chloride penetration resistance of concrete. Cem. Concr. Compos. 46, 56–64 (2014)

    Article  Google Scholar 

  35. Yuan, Q., Shi, C., De Schutter, G., Audenaert, K., Deng, D.: Chloride binding of cement-based materials subjected to external chloride environment – a review. Constr. Build. Mater. 23, 1–13 (2009)

    Article  Google Scholar 

  36. Yoshida, S., Elakneswaran, Y., Nawa, T.: Electrostatic properties of C-S–H and C-A-S-H for predicting calcium and chloride adsorption. Cem. Concr. Compos. 121, 104109 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the support from the Swedish NMR Centre in Umeå, and Scilife Lab (JF) with NMR measurements and all the help given by Tobias Sparrman (VR RFI. The fruitful and constructive discussions with Alisa Machner. Klaartje De Weerdt and Wolfgang Kunther is greatly appreciated. The python codes utilized for visualization in this article are adopted from the codes produced by Klaartje De Weerdt in [22]. Which is hereby acknowledged and greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezou Babaahmadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babaahmadi, A., Figueira, J. (2023). Chloride Binding in Slag Containing Composite Cements. In: Jędrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D. (eds) International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. SynerCrete 2023. RILEM Bookseries, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-031-33211-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33211-1_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33210-4

  • Online ISBN: 978-3-031-33211-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics