Skip to main content

Effect of Selected Process Parameters During Carbonation Hardening on the CO2-Binding Potential of Cementitious Materials

  • Conference paper
  • First Online:
International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures (SynerCrete 2023)

Abstract

The cement industry faces an urgent challenge to reduce CO2-emissions. A promising technology to bind CO2 permanently in cementitious systems is Carbon Capture and Utilization (CCU). Carbonation hardening represents one approach of CCU technologies, and consists of the following steps: pre-curing, carbonation curing and post-curing. The process parameters at each step affect the carbonation degree and rate.

During carbonation curing, combined hydration and carbonation reactions take place. This includes the formation of hydrates as well as carbonates of anhydrous clinker minerals. These reactions proceed simultaneously and are difficult to separate. Therefore, to get a deeper insight into these reactions and to control them, the process parameters that affect the carbonation reaction need to be investigated. Particular interest is ascribed to the relative humidity (RH) in the system as this considerably affects the carbonation degree, since CO2 needs to dissolve in water to react with the calcium from the cementitious phases.

This study investigates the effect of selected process parameters during the pre- and carbonation curing on the CO2-binding potential of cementitious systems. For this, cement pastes were prepared and pre-cured for 6 h or 12 h at 30–80% RH. The carbonation curing was performed in a CO2 chamber at a CO2 concentration of 50% for different durations at 50% RH. The carbonate and bound water content in the samples were quantified with thermogravimetric analysis (TGA).

The results of this study will help elucidating the carbonation hardening mechanism and act as a basis for applying CCU on cementitious materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, D., Ghouleh, Z., Shao, Y.: Review on carbonation curing of cement-based materials. J. CO2 Utiliz. 21, 119–131 (2017)

    Article  Google Scholar 

  2. Stoian, J., et al.: New insights into the prehydration of cement and its mitigation. Cem. Concr. Res. 70, 94–103 (2015)

    Article  Google Scholar 

  3. Young, J.F., Berger, R.L., Breese, J.: Accelerated curing of compacted calcium silicate mortars on exposure to CO2. The American Ceramic Society No. 19-T-73 (1974)

    Google Scholar 

  4. Zhang, D., Li, V.C., Ellis, B.R.: Optimal pre-hydration age for CO2 sequestration through portland cement carbonation. ACS Sustain. Chem. Eng. 6, 15976–15981 (2018)

    Article  Google Scholar 

  5. Winnefeld, F., Schöler, A., Lothenbach, B.: Sample preparation. In: Scrivener, K., Snellings, R., Lothenbach, B. (Eds.), A Practical Guide to Microstructural Analysis of Cementitious Materials, pp. 1–32, CRC Press

    Google Scholar 

  6. Lothenbach, B., Durdziński, P., De Weerdt, K.: Thermogravimetric analysis. In: Scrivener, K., Snellings, R., Lothenbach, B. (Eds.), A Practical Guide to Microstructural Analysis of Cementitious Materials, pp. 178–206, CRC Press

    Google Scholar 

  7. Steinour, H.H.: Some effects of carbon dioxide on mortars and concrete-discussion. J. Am. Concr. Inst. (1959)

    Google Scholar 

  8. Thonemann, N., Zacharopoulos, L., Fromme, F., Nühlen, J.: Environmental impacts of carbon capture and utilization by mineral carbonation: A systematic literature review and meta life cycle assessment. J. Clean. Prod. 332, 130067 (2022)

    Article  Google Scholar 

  9. Zajac, M., Skocek, J., Durdzinski, P., Bullerjahn, F., Skibsted, J., Ben Haha, M.: Effect of carbonated cement paste on composite cement hydration and performance. Cem. Concr. Res. 134, 106090 (2020)

    Article  Google Scholar 

  10. Ihli, J., et al.: Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nat. Commun. 5, 3169 (2014)

    Article  Google Scholar 

  11. Bots, P., Benning, L.G., Rodriguez-Blanco, J.-D., Roncal-Herrero, T., Shaw, S.: Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Cryst. Growth Des. 12, 3806–3814 (2012)

    Article  Google Scholar 

  12. Skocek, J., Zajac, M., BenHaha, M.: Carbon Capture and Utilization by mineralization of cement pastes derived from recycled concrete. Sci. Rep. 10, 5614 (2020)

    Article  Google Scholar 

  13. Morandeau, A., Thiéry, M., Dangla, P.: Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cem. Concr. Res. 56, 153–170 (2014)

    Article  Google Scholar 

  14. Ashraf, W., Olek, J.: Carbonation behavior of hydraulic and non-hydraulic calcium silicates: potential of utilizing low-lime calcium silicates in cement-based materials, Journal of Material. Science 51, 6173–6191 (2016)

    Google Scholar 

  15. Goto, S., Suenaga, K., Kado, T., Fukuhara, M.: Calcium silicate carbonation products. Am. Ceramic Soc. 78(11), 2867–2872 (1995)

    Article  Google Scholar 

  16. Locher, F.: Zement: Grundlagen der Herstellung und Verwendung, Verl. Bau und Technik (2000). ISBN: 9783764004002

    Google Scholar 

  17. Librandi, P., Nielsen, P., Costa, G., Snellings, R., Quaghebeur, M., Baciocchi, R.: Mechanical and environmental properties of carbonated steel slag compacts as a function of mineralogy and CO2 uptake. J. CO2 Utiliz. 33:201–214 (2019)

    Google Scholar 

  18. Mehdipour, I., Falzone, G., La Plante, E.C., Simonetti, D., Neithalath, N., Sant, G.N.: How microstructure and pore moisture affect strength gain in portlandite-enriched composites that mineralize CO2. ACS Sustain. Chem. Eng. 7, 13053–13061 (2019)

    Article  Google Scholar 

  19. Zajac, M., Skibsted, J., Skocek, J., Durdzinski, P., Bullerjahn, F., Ben Haha, M.: Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation. Cem. Concr. Res. 130, 105990 (2020)

    Article  Google Scholar 

  20. Rothstein, D., Thomas, J.J., Christensen, B.J., Jennings, H.M.: Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time. Cem. Concr. Res. 32, 1663–1671 (2002)

    Article  Google Scholar 

  21. Galan, I., Glasser, F.P., Baza, D., Andrade, C.: Assessment of the protective effect of carbonation on portlandite crystals. Cem. Concr. Res. 74, 68–77 (2015)

    Article  Google Scholar 

  22. Zajac, M., Irbe, L., Bullerjahn, F., Hilbig, H., Ben Haha, M.: Mechanisms of carbonation hydration hardening in Portland cements. Cem. Concr. Res. 152, 106687 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Woydich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Woydich, E., Heisig, A., Hilbig, H., Machner, A. (2023). Effect of Selected Process Parameters During Carbonation Hardening on the CO2-Binding Potential of Cementitious Materials. In: Jędrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D. (eds) International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. SynerCrete 2023. RILEM Bookseries, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-031-33187-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33187-9_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33186-2

  • Online ISBN: 978-3-031-33187-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics