Skip to main content

Vibration Damping of Lifting Mechanisms for Elevators Using Control Systems

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing VI (DSMIE 2023)

Abstract

The possibility of increasing lifting mechanisms’ productivity through damping elastic mechanical vibrations that negatively affect the control quality, increase the dynamic winch loads, contribute to the accumulation of fatigue stresses in kinematic circuits, lead to the equipment premature failures and unplanned downtime, as well as an increase in the cost of repairs and operation, is considered. Previous studies demonstrated that establishing mechanical characteristics with the required stiffness decreases the passenger elevators’ lifting mechanism’s vibrations. However, due to the mass ratio, small values such as stiffness formed do not eliminate the vibrations. Recommendations are proposed to improve the winches’ dynamic modes quality at the expense of damping the passenger elevators’ lifting mechanisms vibrations. A generalized block diagram of an elevator system with corrective feedback is given, and the damping coefficient’s maximum possible value and an expression for optimal feedback coefficient value are found. The dependence obtained using a physical model and confirming the derived mathematical regularity is shown. The elevator lifting mechanism start-up oscillograms are given, where significant fluctuations of values in two sections of the mechanical characteristic are registered in the dynamic mode. The oscillograms of the elevator lifting mechanism start with corrective feedback in the control system are also considered, illustrating the significant damping of vertical vibrations. It is found that the damping coefficients’ values can reach and even exceed one, which corresponds to the elevator lifting mechanisms’ aperiodicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, W.W., Ren, H.: Horizontal positioning and anti-swinging control tower crane using adaptive sliding mode control. In: Chinese Control and Decision Conference (CCDC), pp. 4013−4018. Shenyang, China (2018). https://doi.org/10.1109/CCDC.2018.8407820

  2. Shrivastava, N., Pande, A., Lele, J., Kampassi, K.: Embedded control system for self adjusting scissor lift. In: Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1−5. Pune, India (2018). https://doi.org/10.1109/ICCUBEA.2018.8697800

  3. Shuangchang, F., Jie, C., Xiaoqing, C.: Analysis of the hidden danger for old elevator safety. In: 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME), pp. 605−608. Suzhou, China (2020). https://doi.org/10.1109/ICEDME50972.2020.00143

  4. Bonopera, M., Chang, K., Lee, Z.-K.: State-of-the-art review on determining prestress losses in prestressed concrete girders. Appl. Sci. 10(20), 72–57 (2020). https://doi.org/10.3390/app10207257

  5. Boiko, A, Naidenko, E., Wang, Y.: Vibration damping of lifting mechanisms. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds.) Advanced Manufacturing Processes IV. InterPartner 2022. LNME, pp. 403−413. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16651-8_38

  6. Nguyen, T., X., Miura, N., Sone, A.: Analysis and control of compensation rope response in elevator system with time-varying length. In: 11th Asian Control Conference (ASCC), pp. 905−910. Gold Coast, QLD, Australia (2017). https://doi.org/10.1109/ASCC.2017.8287291

  7. Pyatibratov, G., Danshina, A., Altunyan, L.: Optimal force compensating control of robotic lifting mechanisms. In: International Russian Automation Conference (RusAutoCon), pp. 1−5. Sochi, Russia (2019). https://doi.org/10.1109/RUSAUTOCON.2019.8867811

  8. Naidenko, E., Bondar, O., Boiko, A., Fomin, O., Turmanidze, R.: Control optimization of the swing mechanism. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds.) InterPartner 2021. LNME, pp. 13–21. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-91327-4_2

    Chapter  Google Scholar 

  9. Donner, P., Buss, M.: Cooperative swinging of complex pendulum-like objects: experimental evaluation. IEEE Trans. Rob. 32(3), 744–753 (2016). https://doi.org/10.1109/TRO.2016.2560898

    Article  Google Scholar 

  10. Anderle, M., Michiels, W., Čelikovský, S., Vyhlídal, T.: Damping a pendulum’s swing by string length adjustment – design and comparison of various control methods. In: American Control Conference (ACC), pp. 4399−4405. Philadelphia, PA, USA (2019). https://doi.org/10.23919/ACC.2019.8814293

  11. Watanabe, K., Yoshikawa, M., Ishikawa, J.: Damping control of suspended load for truck cranes in consideration of second bending mode oscillation. In: IECON 2018 − 44th Annual Conference of the IEEE Industrial Electronics Society, pp. 4561−4568. Washington, DC (2018). https://doi.org/10.1109/IECON.2018.8591232

  12. Zhang, H., Zhang, R., On, K., Liu, L.: Variable universe fuzzy control of high-speed elevator horizontal vibration based on firefly algorithm and backpropagation fuzzy neural network. IEEE Access 9, 57020–57032 (2021). https://doi.org/10.1109/ACCESS.2021.3072648

    Article  Google Scholar 

  13. Kodani, N., Ouchi, S., Takahashi, K.: Transporting and rotating control of a jib crane by control moment gyro. In: IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 8297−8302. Beijing, China (2017). DOI: https://doi.org/10.1109/IECON.2017.8217456

  14. Zudilova, T.V., Ivanov, S.E., Ivanova, L.N.: The automation of electromechanical lift for disabled people with control from a mobile device. In: Computing Conference, pp. 668−674. London, UK (2017). https://doi.org/10.1109/SAI.2017.8252167

  15. Yoshikawa, M., Iwatani, A., Ishikawa, J.: Damping control of suspended load for truck cranes in consideration of control input dimension. In: Duy, V., Dao, T., Zelinka, I., Kim, S., Phuong, T. (eds.) AETA 2017 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. AETA 2017. LNEE, vol 465. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-69814-4_42

  16. Chernenko, M.Y., Kucher E.S., Kamysheva, E.Y.: High-speed passenger lift model development. In: International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), pp. 1−4. Vladivostok, Russia (2018). https://doi.org/10.1109/FarEastCon.2018.8602562

  17. Wang, J., Tang, S., X., Krstic, M.: Lateral vibration suppression of a disturbed mining cable elevator with flexible guideways. In: 59th IEEE Conference on Decision and Control (CDC), pp. 4436−4441. Jeju, Korea (South) (2020). https://doi.org/10.1109/CDC42340.2020.9303756

  18. Tkachev, A., Tkachev, A., Predrag, D., Prokopovych, I., Kostina, M.: Static stiffness of the crane bridges under moving load distribution. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds.) InterPartner 2021. LNME, pp. 43–52. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-91327-4_5

    Chapter  Google Scholar 

  19. Crespo, R.S., Kaczmarczyk, S., Picton, P., Su, H.: Modelling and simulation of a stationary high-rise elevator system to predict the dynamic interactions between its components. Int. J. Mech. Sci. 137, 24–45 (2018). https://doi.org/10.1016/j.ijmecsci.2018.01.011

    Article  Google Scholar 

  20. Nakagiri, S., Takahashi, S.: Effect of horizontal constraints on flexural vibration of a long elevator rope. Theoret. Appl. Mech. Japan 52, 145–151 (2003). https://doi.org/10.11345/nctam.52.145

    Article  Google Scholar 

  21. Mei, D., Du, X., Chen, Z.: Optimization of dynamic parameters for a traction type passenger elevator using a dynamic byte coding genetic algorithm. J. Mech. Eng. Sci. 223 Part C, 595−605 (2009). https://doi.org/10.1243/09544062JMES1149

  22. Zhang, Y., Agrawal, S.K., Hagedorn, P.: Longitudinal vibration modeling and control of a flexible transporter system with arbitrarily varying cable lengths. J. Vibrat. Control 11(3), 431–456 (2005). https://doi.org/10.1177/1077546305047988

  23. Otsuki, M., Yoshida, K., Nakagaki, S., Nakagawa, T., Fujimoto, S., Kimura, H.: Experimental examination of non-stationary robust vibration control for an elevator rope. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 218(7), 531–544 (2004). https://doi.org/10.1177/095965180421800702

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrii Boiko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boiko, A., Naidenko, E., Besarab, O., Bondar, O. (2023). Vibration Damping of Lifting Mechanisms for Elevators Using Control Systems. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing VI. DSMIE 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-32774-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32774-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32773-5

  • Online ISBN: 978-3-031-32774-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics