Skip to main content

An Update-and-Stabilize Framework for the Minimum-Norm-Point Problem

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2023)

Abstract

We consider the minimum-norm-point (MNP) problem of polyhedra, a well-studied problem that encompasses linear programming. Inspired by Wolfe’s classical MNP algorithm, we present a general algorithmic framework that performs first order update steps, combined with iterations that aim to ‘stabilize’ the current iterate with additional projections, i.e., finding a locally optimal solution whilst keeping the current tight inequalities. We bound the number of iterations polynomially in the dimension and in the associated circuit imbalance measure. In particular, the algorithm is strongly polynomial for network flow instances. The conic version of Wolfe’s algorithm is a special instantiation of our framework; as a consequence, we obtain convergence bounds for this algorithm. Our preliminary computational experiments show a significant improvement over standard first-order methods.

This is an extended abstract. The full version including all omitted proofs is available on arXiv:2211.02560.

SF’s research is supported by JSPS KAKENHI Grant Numbers JP19K11839 and 22K11922 and by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. TK is supported by JSPS KAKENHI Grant Number JP19K11830. LAV’s research is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 757481–ScaleOpt).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bach, F.: Learning with submodular functions: a convex optimization perspective. Found. Trends Mach. Learn. 6(2–3), 145–373 (2013)

    Article  MATH  Google Scholar 

  2. Chakrabarty, D., Jain, P., Kothari, P.: Provable submodular minimization using Wolfe’s algorithm. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  3. Dadush, D., Huiberts, S., Natura, B., Végh, L.A.: A scaling-invariant algorithm for linear programming whose running time depends only on the constraint matrix. In: Proceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC), pp. 761–774 (2020)

    Google Scholar 

  4. Dadush, D., Natura, B., Végh, L.A.: Revisiting Tardos’s framework for linear programming: faster exact solutions using approximate solvers. In: Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 931–942 (2020)

    Google Scholar 

  5. De Loera, J.A., Haddock, J., Rademacher, L.: The minimum Euclidean-norm point in a convex polytope: Wolfe’s combinatorial algorithm is exponential. SIAM J. Comput. 49(1), 138–169 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ekbatani, F., Natura, B., Végh, A.L.: Circuit imbalance measures and linear programming. In: Surveys in Combinatorics 2022. London Mathematical Society Lecture Note Series, pp. 64–114. Cambridge University Press, Cambridge (2022)

    Google Scholar 

  7. Ene, A., Vladu, A.: Improved convergence for \(\ell _1\) and \(\ell _\infty \) regression via iteratively reweighted least squares. In: International Conference on Machine Learning, pp. 1794–1801. PMLR (2019)

    Google Scholar 

  8. Fujishige, S.: Lexicographically optimal base of a polymatroid with respect to a weight vector. Math. Oper. Res. 5(2), 186–196 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fujishige, S.: A capacity-rounding algorithm for the minimum-cost circulation problem: a dual framework of the Tardos algorithm 35(3), 298–308 (1986)

    Google Scholar 

  10. Fujishige, S., Hayashi, T., Yamashita, K., Zimmermann, U.: Zonotopes and the LP-Newton method. Optim. Eng. 10(2), 193–205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fujishige, S., Isotani, S.: A submodular function minimization algorithm based on the minimum-norm base. Pac. J. Optim. 7(1), 3–17 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Fulkerson, D.: Networks, frames, blocking systems. Math. Decis. Sci. Part I, Lect. Appl. Math. 2, 303–334 (1968)

    MathSciNet  MATH  Google Scholar 

  13. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand. 49(4), 263–265 (1952)

    Article  MathSciNet  Google Scholar 

  14. Lacoste-Julien, S., Jaggi, M.: On the global linear convergence of Frank-Wolfe optimization variants. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  15. Lawson, C.L.: Contribution to the theory of linear least maximum approximation. Ph.D. thesis (1961)

    Google Scholar 

  16. Necoara, I., Nesterov, Y., Glineur, F.: Linear convergence of first order methods for non-strongly convex optimization. Math. Program. 175(1), 69–107 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Oper. Res. 41(2), 338–350 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Osborne, M.R.: Finite Algorithms in Optimization and Data Analysis. Wiley, Hoboken (1985)

    Google Scholar 

  19. Peña, J., Vera, J.C., Zuluaga, L.F.: New characterizations of Hoffman constants for systems of linear constraints. Math. Program. 1–31 (2020)

    Google Scholar 

  20. Rockafellar, R.T.: The elementary vectors of a subspace of \(R^N\). In: Combinatorial Mathematics and Its Applications: Proceedings North Carolina Conference, Chapel Hill, 1967, pp. 104–127. The University of North Carolina Press (1969)

    Google Scholar 

  21. Tardos, É.: A strongly polynomial minimum cost circulation algorithm. Combinatorica 5(3), 247–255 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vavasis, S.A., Ye, Y.: A primal-dual interior point method whose running time depends only on the constraint matrix 74(1), 79–120 (1996)

    Google Scholar 

  23. Wilhelmsen, D.R.: A nearest point algorithm for convex polyhedral cones and applications to positive linear approximation. Math. Comput. 30(133), 48–57 (1976)

    MathSciNet  MATH  Google Scholar 

  24. Wolfe, P.: Finding the nearest point in a polytope. Math. Program. 11(1), 128–149 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The third author would like to thank Richard Cole, Daniel Dadush, Christoph Hertrich, Bento Natura, and Yixin Tao for discussions on first order methods and circuit imbalances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László A. Végh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fujishige, S., Kitahara, T., Végh, L.A. (2023). An Update-and-Stabilize Framework for the Minimum-Norm-Point Problem. In: Del Pia, A., Kaibel, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2023. Lecture Notes in Computer Science, vol 13904. Springer, Cham. https://doi.org/10.1007/978-3-031-32726-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32726-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32725-4

  • Online ISBN: 978-3-031-32726-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics