Skip to main content

Convergence Analysis of a Finite Volume Scheme for a Distributed Order Diffusion Equation

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2022)

Abstract

We consider a distributed order diffusion equation with space-dependent conductivity. The distributed order operator is defined via an integral of the usual fractional Caputo derivative multiplied by a weight function \(\omega \), i.e. \(\displaystyle \mathbb {D}_t^\omega u(t)=\int _0^1 \omega (\alpha )\partial _t^\alpha u(t) d\alpha \), where \(\partial _t^\alpha \) is the Caputo derivative of order \(\alpha \) given by \( \displaystyle \partial _t^\alpha u(t)=\frac{1}{\varGamma (1-\alpha )}\int _0^t(t-s)^{-\alpha }u_s(s)ds\).

We establish a new fully discrete finite volume scheme in which the discretization in space is performed using the finite volume method developed in [9] whereas the discretization of the distributed order operator \(\displaystyle \mathbb {D}_t^\omega u\) is given by an approximation of the integral, over the unit interval, using the known Mid Point rule and the approximation of the Caputo derivative \( \displaystyle \partial _t^\alpha u\) is defined by the known L1-formula on the uniform temporal mesh.

We prove rigorously new error estimates in \(L^\infty (L^2)\) and \(L^2(H^1)\)–discrete norms. These error estimates are obtained thanks to a new well developed discrete a priori estimate and also to the fact that the full discretization of the distributed-order fractional derivative leads to multi-term fractional order derivatives but the number of these terms is varying accordingly with the approximation of the integral over (0, 1).

This note is a continuation of our previous work [6] which dealt with the Gradient Discretization method (GDM) for time fractional-diffusion equation in which the fractional order derivative is fixed and it is given in the Caputo sense (without consideration the distributed-order fractional derivative) and conductivity is equal to one.

Supported by MCS team (LAGA Laboratory) of the “Université Sorbonne- Paris Nord”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alikhanov, A.-A.: A new difference scheme for the fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benkhaldoun, F., Bradji, A.: A second order time accurate finite volume scheme for the time-fractional diffusion wave equation on general nonconforming meshes. In: Lirkov, I., Margenov, S. (eds.) LSSC 2019. LNCS, vol. 11958, pp. 95–104. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41032-2_10

  3. Benkhaldoun, F., Bradji, A.: Note on the convergence of a finite volume scheme for a second order hyperbolic equation with a time delay in any space dimension. In: Klöfkorn, R., Keilegavlen, E., Radu, F.A., Fuhrmann, J. (eds.) FVCA 2020. SPMS, vol. 323, pp. 315–324. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-43651-3_28

  4. Benkhaldoun, F., Bradji, A., Ghoudi, T.: A finite volume scheme for a wave equation with several time independent delays. In: Lirkov, I., Margenov, S. (eds.) LSSC 2021. LNCS, vol. 13127, pp. 498–506. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97549-4_57

  5. Bradji, A.: A new optimal \(L^{\infty }(H^1)\)–error estimate of a SUSHI scheme for the time fractional diffusion equation. In: Klöfkorn, R., Keilegavlen, E., Radu, F.A., Fuhrmann, J. (eds.) FVCA 2020. SPMS, vol. 323, pp. 305–314. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43651-3_27

  6. Bradji, A.: A new analysis for the convergence of the gradient discretization method for multidimensional time fractional diffusion and diffusion-wave equations. Comput. Math. Appl. 79(2), 500–520 (2020)

    Google Scholar 

  7. Bradji, A, Fuhrmann. J.: Convergence order of a finite volume scheme for the time-fractional diffusion equation. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2016. LNCS, vol. 10187, pp. 33–45. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57099-0_4

  8. Bu, W., Xiao, A., Zeng, W.: Finite difference/finite element methods for distributed-order time fractional diffusion equations. J. Sci. Comput. 72(1), 422–441 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. IMA J. Numer. Anal. 30(4), 1009–1043 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Faires, J.D., Burden, R., Burden, A.M.: Numerical Methods, 10th edn. Cengage Learning, Boston (2016)

    MATH  Google Scholar 

  11. Gao, X., Liu, F., Li, H., Liu, Y., Turner, I., Yin, B.: A novel finite element method for the distributed-order time fractional Cable equation in two dimensions. Comput. Math. Appl. 80(5), 923–939 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Gao, G.-H, Sun, Z.-Z: Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 66(3), 1281–1312 (2016)

    Google Scholar 

  13. Gao, G.H., Sun, H.W., Sun, Z.: Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298, 337–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, G.-H., Sun, Z.-Z., Zhang, H.-W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meerschaert, M.M., Nane, E., Vellaisamy, P.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379(1), 216–228 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications. Mathematics in Science and Engineering, vol. 198. Academic Press Inc, San Diego (1999)

    Google Scholar 

  18. Pimenov, V.G., Hendy, A.S., De Staelen, R.H.: On a class of non-linear delay distributed order fractional diffusion equations. J. Comput. Appl. Math. 318, 433–443 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80(3), 825–838 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, Y.-N, Sun, Z.-Z, Liao, H.-L.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Bradji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benkhaldoun, F., Bradji, A. (2023). Convergence Analysis of a Finite Volume Scheme for a Distributed Order Diffusion Equation. In: Georgiev, I., Datcheva, M., Georgiev, K., Nikolov, G. (eds) Numerical Methods and Applications. NMA 2022. Lecture Notes in Computer Science, vol 13858. Springer, Cham. https://doi.org/10.1007/978-3-031-32412-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32412-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32411-6

  • Online ISBN: 978-3-031-32412-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics