Skip to main content

Main Issues to Overcome in Modern Penetrating Keratoplasty

  • Chapter
  • First Online:
Modern Keratoplasty

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 134 Accesses

Abstract

We have provided a high-level overview that addresses two fundamental causes of early and late graft rejection (immunological rejection and endothelial cell failure) in the first section, as well as the short-term and long-term functional and refractive results of penetrating keratoplasty in the second.

The clinical features of graft failure following penetrating keratoplasty are discussed in greater depth in the third section. These clinical aspects cover prevention, therapy, safety measures, and methods for identifying corneal transplant rejection.

We also consider decreasing blood vessels in the recipient cornea and corneal angiogenesis. In the clinic, we should be cognizant of graft failure risk factors, including donor and eye banking protocols (age, sex, and graft size), besides recipient-related factors (primary diagnosis, number of surgeries, neovascularization, and comorbidities such as infections, glaucoma, ocular surface diseases, inflammation, and systemic chronic diseases).

In a couple of these subsections pertaining to Section 4, surgery-related aspects (combination treatments) and Penetrating keratoplasty in keratoconus were discussed (decentered grafts and suturing technique). The fourth and fifth sections address the postoperative care and management of astigmatism following penetrating keratoplasty, respectively. Subsections of the fifth section discuss postoperative intraocular pressure measurement and patient management to lower the likelihood of corneal transplant rejection. Immunosuppressive therapies (immunosuppressive, antiproliferative, blocking the activation and action of T cell, and induction of allospecific tolerance drugs) and Gene Therapy will be discussed alongside the role of various corticosteroids, their bioavailability, and duration in the treatment of corneal transplant rejection. Finally, we proved the use of several medications in eye clinics by considering KPs, vascularization, and iris adhesions to be the most common clinical points in the stages of acute corneal transplant rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If there are no risk factors, transplant rejection reduces as the recipient becomes older.

  2. 2.

    Considering size to prevent rejection.

  3. 3.

    The benefits of steroid treatment should be weighed against the risks of long-term steroid therapy, especially in those with an underlying condition that causes damage to the eyes.

  4. 4.

    Systemic sensitization to donor antigens is more likely than local alterations caused by the main graft to hasten the rejective reaction. This rejection is unrelated to MHC congruence and could be caused by MHC components shared by both the first and second donors. The survival of the second link will not be improved by matching the donor-recipient HLA17. Therefore, the chance of rejection increases after the second corneal transplant operation [99]. No increases in the chances of transplant rejection have been observed in the other eye of someone whose first eye has had a rejection corneal transplant in any of the authors’ clinical studies.

  5. 5.

    Immune reactions can occur after any inflammation in the eyes that have had corneal transplantation, and YAG laser capsulotomy is no exception. To decrease these immunological reactions, steroid drops should be used following capsulotomy [125, 126].

  6. 6.

    Topical steroid after Low-Risk surgery should be used for at least 2 months until ACAID is created, with eye pressure and lens position monitored regularly. In patients with a low risk of rejection, steroid treatment should be started at 2- to 3-h intervals and continued until the KP has entirely disappeared. Even daily use of a steroid drop can cause eye strain, cataracts in phakic patients, and corneal infectious crystalline keratopathy (ICK).

References

  1. Arnalich-Montiel F, Alió del Barrio JL, Alió JL. Corneal surgery in keratoconus: which type, which technique, which outcomes? Eye Vis. 2016;3:2.

    Article  Google Scholar 

  2. Frost NA, Wu J, Lai TF, Coster DJ. A review of randomized controlled trials of penetrating keratoplasty techniques. Ophthalmology. 2006;113:942–9.

    Article  Google Scholar 

  3. Trufanov SV, Budnikova EA, Rozinova VN [Modern modifications of penetrating keratoplasty with complex operative incision]. Vestn oftalmol. 2019;135:260–6.

    Google Scholar 

  4. Adeyoju J, Konstantopoulos A, Mehta JS, Hossain P. Femtolaser-assisted keratoplasty: surgical outcomes and benefits. J EuCornea. 2020;8:1–13.

    Article  Google Scholar 

  5. Tóth G, et al. Comparison of excimer laser versus femtosecond laser assisted trephination in penetrating keratoplasty: a retrospective study. Adv Ther. 2019;36:3471–82.

    Article  Google Scholar 

  6. Castellanos-González JA, Orozco-Vega R, González Ojeda A, Martínez Ruiz AM, Fuentes-Orozco C. Evaluation of the quality of life related to vision after penetrating keratoplasty. Archiv Soc Espan Oftalmol. 2021;96:69–73.

    Article  Google Scholar 

  7. Selver OB, Karaca I, Palamar M, Egrilmez S, Yagci A. Graft failure and repeat penetrating keratoplasty. Exp Clin Transplant. 2021;19:72–6.

    Article  Google Scholar 

  8. Chotikavanich S, Prabhasawat P, Satjapakasit O. Ten-year survival of optical penetrating keratoplasty and risk factors for graft failure in Thai patients. J Med Assoc Thail. 2020;103:883–90.

    Article  Google Scholar 

  9. Panda A, Vanathi M, Kumar A, Dash Y, Priya S. Corneal graft rejection. Surv Ophthalmol. 2007;52:375–96.

    Article  Google Scholar 

  10. Qazi Y, Hamrah P. Corneal allograft rejection: immunopathogenesis to therapeutics. J Clin Cell Immunol. 2013;2013:006.

    Google Scholar 

  11. Guilbert E, et al. Long-term rejection incidence and reversibility after penetrating and lamellar keratoplasty. Am J Ophthalmol. 2013;155:560–569.e562.

    Article  Google Scholar 

  12. Anderson E, Chang V. Corneal allograft rejection and failure. Am Acad Ophthalmol. 2015;

    Google Scholar 

  13. Benetz BA, et al. Endothelial morphometric measures to predict endothelial graft failure after penetrating keratoplasty. JAMA Ophthalmol. 2013;131:601–8.

    Article  Google Scholar 

  14. Lass JH, et al. Endothelial cell density to predict endothelial graft failure after penetrating keratoplasty. Arch Ophthalmol. 2010;128:63–9.

    Article  Google Scholar 

  15. Di Zazzo A, Kheirkhah A, Abud TB, Goyal S, Dana R. Management of high-risk corneal transplantation. Surv Ophthalmol. 2017;62:816–27.

    Article  Google Scholar 

  16. Gómez‐Benlloch A, et al. Causes of corneal transplant failure: a multicentric study. Acta Ophthalmol. 2021;99:e922–8.

    Article  Google Scholar 

  17. Sellami D, et al. Epidemiology and risk factors for corneal graft rejection. Transplant Proc. 2007;39:2609–11. (Elsevier).

    Article  CAS  Google Scholar 

  18. Inoue K, Amano S, Oshika T, Tsuru T. Risk factors for corneal graft failure and rejection in penetrating keratoplasty. Acta Ophthalmol Scand. 2001;79:251–5.

    Article  CAS  Google Scholar 

  19. Hori J, Isobe M, Yamagami S, Tsuru T. Acceptance of second corneal allograft by combination of anti-VLA-4 and anti-LFA-1 monoclonal antibodies in mice. Transplant Proc. 1998;1:200–1.

    Article  Google Scholar 

  20. Baratta RO, Schlumpf E, Buono BJD, DeLorey S, Calkins DJ. Corneal collagen as a potential therapeutic target in dry eye disease. Surv Ophthalmol. 2022;67:60–7.

    Article  Google Scholar 

  21. Alio JL, et al. Corneal graft failure: an update. Br J Ophthalmol. 2021;105:1049.

    Article  Google Scholar 

  22. Siregar S. How ocular surface disorder affected corneal graft survival. In: Dry eye syndrome-modern diagnostic techniques and advanced treatments. Rijeka: IntechOpen; 2021.

    Google Scholar 

  23. Beining MW, et al. In-office thermal systems for the treatment of dry eye disease. Surv Ophthalmol. 2022;67:1405–18.

    Article  Google Scholar 

  24. Alió del Barrio JL, et al. Corneal transplantation after failed grafts: options and outcomes. Surv Ophthalmol. 2021;66:20–40.

    Article  Google Scholar 

  25. Ji YW, et al. Corneal lymph angiogenesis facilitates ocular surface inflammation and cell trafficking in dry eye disease. Ocul Surf. 2018;16:306–13.

    Article  Google Scholar 

  26. Perez VL, Pflugfelder SC, Zhang S, Shojaei A, Haque R. Lifitegrast, a novel integrin antagonist for treatment of dry eye disease. Ocul Surf. 2016;14:207–15.

    Article  Google Scholar 

  27. Zhang X, Vadoothker S, Munir WM, Saeedi O. Ocular surface disease and glaucoma medications: a clinical approach. Eye Contact Lens. 2019;45:11–8.

    Article  Google Scholar 

  28. Song Y, Zhang J, Pan Z. Systematic review and meta-analysis of clinical outcomes of penetrating keratoplasty versus deep anterior lamellar keratoplasty for keratoconus. Exp Clin Transplant. 2019;18:417–28.

    Article  Google Scholar 

  29. Fukuoka S, et al. Extended long-term results of penetrating keratoplasty for keratoconus. Cornea. 2010;29:528–30.

    Article  Google Scholar 

  30. Javadi MA, et al. Outcomes of penetrating keratoplasty in keratoconus. Cornea. 2005;24:941–6.

    Article  Google Scholar 

  31. Pramanik S, Musch DC, Sutphin JE, Farjo AA. Extended long-term outcomes of penetrating keratoplasty for keratoconus. Ophthalmology. 2006;113:1633–8.

    Article  Google Scholar 

  32. Busin M, Madi S, Scorcia V, Santorum P, Nahum Y. A two-piece microkeratome-assisted mushroom keratoplasty improves the outcomes and survival of grafts performed in eyes with diseased stroma and healthy endothelium (An American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc. 2015;113:T1.

    Google Scholar 

  33. Garrido C, Cardona G, Güell JL, Pujol J. Visual outcome of penetrating keratoplasty, deep anterior lamellar keratoplasty and Descemet membrane endothelial keratoplasty. J Opt. 2018;11:174–81.

    Article  Google Scholar 

  34. Lam F, Rahman M, Ramaesh K. Traumatic wound dehiscence after penetrating keratoplasty—a cause for concern. Eye. 2007;21:1146–50.

    Article  CAS  Google Scholar 

  35. Tzelikis PF, et al. Traumatic wound dehiscence after corneal keratoplasty. Arq Bras Oftalmol. 2015;78:310–2.

    Article  Google Scholar 

  36. Latz C, Asshauer T, Rathjen C, Mirshahi A. Femtosecond-laser assisted surgery of the eye: overview and impact of the low-energy concept. Micromachines. 2021;12:122.

    Article  Google Scholar 

  37. Seitz B, Hager T, Langenbucher A, Naumann GO. Reconsidering sequential double running suture removal after penetrating keratoplasty: a prospective randomized study comparing excimer laser and motor trephination. Cornea. 2018;37:301–6.

    Article  Google Scholar 

  38. Seitz B, et al. Penetrating keratoplasty for keratoconus – excimer versus femtosecond laser trephination. Open Ophthalmol J. 2017;11:225–40.

    Article  Google Scholar 

  39. Boden KT, et al. Novel liquid interface for femtosecond laser-assisted penetrating keratoplasty. Curr Eye Res. 2020;45:1051–7.

    Article  CAS  Google Scholar 

  40. Liu Y, Li X, Li W, Jiu X, Tian M. Systematic review and meta-analysis of femtosecond laser–enabled keratoplasty versus conventional penetrating keratoplasty. Eur J Ophthalmol. 2021;31:976–87.

    Article  Google Scholar 

  41. Maier P, Böhringer D, Birnbaum F, Reinhard T. Improved wound stability of top-hat profiled femtosecond laser-assisted penetrating keratoplasty in vitro. Cornea. 2012;31:963–6.

    Article  Google Scholar 

  42. Seitz B, et al. Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser. Am J Ophthalmol. 2005;139:941–4.

    Article  Google Scholar 

  43. Saelens IE, Bartels MC, Van Rij G. Manual trephination of mushroom keratoplasty in advanced keratoconus. Cornea. 2008;27:650–5.

    Article  Google Scholar 

  44. McAllum P, Kaiserman I, Bahar I, Rootman D. Femtosecond laser top hat penetrating keratoplasty: wound burst pressures of incomplete cuts. Arch Ophthalmol. 2008;126:822–5.

    Article  Google Scholar 

  45. Maier P, Birnbaum F, Reinhard T. Therapeutic applications of the femtosecond laser in corneal surgery. Klinische Monatsblatter fur Augenheilkunde. 2010;227:453–9.

    Article  CAS  Google Scholar 

  46. Williams KA, et al. How effective is penetrating corneal transplantation? Factors influencing long-term outcome in multivariate analysis. Transplantation. 2006;81:896–901.

    Article  Google Scholar 

  47. Borderie VM, et al. Predicted long-term outcome of corneal transplantation. Ophthalmology. 2009;116:2354–60.

    Article  Google Scholar 

  48. Anshu A, et al. Long-term review of penetrating keratoplasty: a 20-year review in Asian eyes. Am J Ophthalmol. 2021;224:254–66.

    Article  Google Scholar 

  49. Reinhard T, Böhringer D, Hüschen D, Sundmacher R. Chronic endothelial cell loss of the graft after penetrating keratoplasty: influence of endothelial cell migration from graft to host. Klinische Monatsblatter fur Augenheilkunde. 2002;219:410–6.

    Article  Google Scholar 

  50. Chung S-H, Kim HK, Kim MS. Corneal endothelial cell loss after penetrating keratoplasty in relation to preoperative recipient endothelial cell density. Ophthalmologica. 2010;224:194–8.

    Article  Google Scholar 

  51. Arundhati A, et al. Comparative study of long-term graft survival between penetrating keratoplasty and deep anterior lamellar keratoplasty. Am J Ophthalmol. 2021;224:207–16.

    Article  Google Scholar 

  52. Borderie VM, Guilbert E, Touzeau O, Laroche L. Graft rejection and graft failure after anterior lamellar versus penetrating keratoplasty. Am J Ophthalmol. 2011;151:1024–1029.e1021.

    Article  Google Scholar 

  53. Azevedo Magalhaes O, Shalaby Bardan A, Zarei-Ghanavati M, Liu C. Literature review and suggested protocol for prevention and treatment of corneal graft rejection. Eye. 2020;34:442–50.

    Article  Google Scholar 

  54. Jabbehdari S, et al. Update on the management of high-risk penetrating keratoplasty. Curr Ophthalmol Rep. 2017;5:38–48.

    Article  Google Scholar 

  55. Javadi M. Corneal graft rejection: mechanism, clinical manifestations, diagnosis, and treatment. Bina J Ophthalmol. 2004;10:90–105.

    Google Scholar 

  56. Chirapapaisan C, et al. In vivo confocal microscopy demonstrates increased immune cell densities in corneal graft rejection correlating with signs and symptoms. Am J Ophthalmol. 2019;203:26–36.

    Article  Google Scholar 

  57. Abou Shousha M, et al. In vivo characteristics of corneal endothelium/descemet membrane complex for the diagnosis of corneal graft rejection. Am J Ophthalmol. 2017;178:27–37.

    Article  CAS  Google Scholar 

  58. Van Den Berg R, et al. Descemet’s membrane thickening as a sign for the diagnosis of corneal graft rejection: an ex vivo study. Cornea. 2017;36:1535.

    Article  Google Scholar 

  59. Eleiwa TK, et al. Diagnostic performance of three-dimensional endothelium/descemet membrane complex thickness maps in active corneal graft rejection. Am J Ophthalmol. 2020;210:48–58.

    Article  Google Scholar 

  60. Roshandel D, et al. Current and emerging therapies for corneal neovascularization. Ocul Surf. 2018;16:398–414.

    Article  Google Scholar 

  61. Javadi MA, Feizi S. Mustard gas eye injuries in chemical warfare victims; 2015. (Farhang Farda).

    Google Scholar 

  62. Koenig Y, et al. Short-and long-term safety profile and efficacy of topical bevacizumab (Avastin®) eye drops against corneal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2009;247:1375–82.

    Article  CAS  Google Scholar 

  63. Dastjerdi MH, Sadrai Z, Saban DR, Zhang Q, Dana R. Corneal penetration of topical and subconjunctival bevacizumab. Invest Ophthalmol Vis Sci. 2011;52:8718–23.

    Article  CAS  Google Scholar 

  64. Oliveira HB, et al. VEGF TrapR1R2 suppresses experimental corneal angiogenesis. Eur J Ophthalmol. 2010;20:48–54.

    Article  Google Scholar 

  65. Wang Q, et al. Pharmacological characteristics and efficacy of a novel anti-angiogenic antibody FD006 in corneal neovascularization. BMC Biotechnol. 2014;14:1–9.

    Article  Google Scholar 

  66. Dekaris I, Gabrić N, Drača N, Pauk-Gulić M, Miličić N. Three-year corneal graft survival rate in high-risk cases treated with subconjunctival and topical bevacizumab. Graefes Arch Clin Exp Ophthalmol. 2015;253:287–94.

    Article  CAS  Google Scholar 

  67. Jovanovic V, Nikolic L. The effect of topical doxycycline on corneal neovascularization. Curr Eye Res. 2014;39:142–8.

    Article  CAS  Google Scholar 

  68. Hata Y, et al. Antiangiogenic properties of fasudil, a potent Rho-Kinase inhibitor. Jpn J Ophthalmol. 2008;52:16–23.

    Article  CAS  Google Scholar 

  69. Faraj LA, Elalfy MS, Said DG, Dua HS. Fine needle diathermy occlusion of corneal vessels. Br J Ophthalmol. 2014;98:1287–90.

    Article  Google Scholar 

  70. Al-Torbak AA. Photodynamic therapy with verteporfin for corneal neovascularization. Mid E Afr J Ophthalmol. 2012;19:185.

    Article  Google Scholar 

  71. Lee HS, Lee JH, Kim CE, Yang JW. Anti-neovascular effect of chondrocyte-derived extracellular matrix on corneal alkaline burns in rabbits. Graefes Arch Clin Exp Ophthalmol. 2014;252:951–61.

    Article  CAS  Google Scholar 

  72. Ferrari G, et al. Topical ranibizumab as a treatment of corneal neovascularization. Cornea. 2013;32:992.

    Article  Google Scholar 

  73. Group, C.D.S.I. The effect of donor age on corneal transplantation outcome: results of the cornea donor study. Ophthalmology. 2008;115:620–626.e626.

    Article  Google Scholar 

  74. Stulting RD, et al. Effect of donor and recipient factors on corneal graft rejection. Cornea. 2012;31:1141.

    Article  Google Scholar 

  75. Barraquer RI, Pareja-Aricò L, Alba Gómez-Benlloch RM. Risk factors for graft failure after penetrating keratoplasty. Medicine. 2019;98:e15274.

    Article  Google Scholar 

  76. Williams KA, Lowe M, Bartlett C, Kelly T-L, Coster DJ. Risk factors for human corneal graft failure within the Australian corneal graft registry. Transplantation. 2008;86:1720–4.

    Article  Google Scholar 

  77. Mannis MJ, et al. The effect of donor age on penetrating keratoplasty for endothelial disease: graft survival after 10 years in the Cornea Donor Study. Ophthalmology. 2013;120:2419–27.

    Article  Google Scholar 

  78. Group, C.D.S.I. Donor age and corneal endothelial cell loss 5 years after successful corneal transplantation: specular microscopy ancillary study results. Ophthalmology. 2008;115:627–632.e628.

    Article  Google Scholar 

  79. Lass JH, et al. Baseline factors related to endothelial cell loss following penetrating keratoplasty. Arch Ophthalmol. 2011;129:1149–54.

    Article  Google Scholar 

  80. Feizi S, et al. Penetrating keratoplasty versus deep anterior lamellar keratoplasty in children and adolescents with keratoconus. Am J Ophthalmol. 2021;226:13–21.

    Article  Google Scholar 

  81. Velásquez-Monzón K, Navarro-Peña MC, Klunder-Klunder M, Tsatsos M, Ramírez-Ortiz MA. Pediatric penetrating keratoplasty and graft rejection: experience at the Hospital Infantil de México Federico Gómez. Boletín médico del Hospital Infantil de México. 2020;77:23–7.

    Article  Google Scholar 

  82. Anshu A, Lim LS, Htoon HM, Tan DT. Postoperative risk factors influencing corneal graft survival in the Singapore Corneal Transplant Study. Am J Ophthalmol. 2011;151:442–448.e441.

    Article  Google Scholar 

  83. Böhringer D, et al. Matching of the minor histocompatibility antigen HLA-A1/HY may improve prognosis in corneal transplantation. Transplantation. 2006;82:1037–41.

    Article  Google Scholar 

  84. Skeens HM, Holland EJ. Large-diameter penetrating keratoplasty: indications and outcomes. Cornea. 2010;29:296–301.

    Article  Google Scholar 

  85. Lass JH, et al. Donor age and factors related to endothelial cell loss 10 years after penetrating keratoplasty: specular Microscopy Ancillary Study. Ophthalmology. 2013;120:2428–35.

    Article  Google Scholar 

  86. Epstein AJ, de Castro TN, Laibson PR, Cohen EJ, Rapuano CJ. Risk factors for the first episode of corneal graft rejection in keratoconus. Cornea. 2006;25:1005–11.

    Article  Google Scholar 

  87. Williams KA, Roder D, Esterman A, Muehlberg SM, Coster DJ. Factors predictive of corneal graft survival: report from the Australian Corneal Graft Registry. Ophthalmology. 1992;99:403–14.

    Article  CAS  Google Scholar 

  88. Bidaut-Garnier M, et al. Evolution of corneal graft survival over a 30-year period and comparison of surgical techniques: a cohort study. Am J Ophthalmol. 2016;163:59–69.

    Article  Google Scholar 

  89. Goble RR, Lea SJH, Falcon MG. The use of the same size host and donor trephine in penetrating keratoplasty for keratoconus. Eye. 1994;8:311–4.

    Article  Google Scholar 

  90. Li C, et al. Effect of corneal graft diameter on therapeutic penetrating keratoplasty for fungal keratitis. Int J Ophthalmol. 2012;5:698.

    Google Scholar 

  91. Beekhuis WH. Current clinician’s opinions on risk factors in corneal grafting. Results of a survey among surgeons in the eurotransplant area. Cornea. 1995;14:39–42.

    Article  CAS  Google Scholar 

  92. Wilson SE. Graft failure after penetrating keratoplasty. Surv Ophthalmol. 1990;34:325–56.

    Article  CAS  Google Scholar 

  93. Fasolo A, et al. Risk factors for graft failure after penetrating keratoplasty: 5-year follow-up from the corneal transplant epidemiological study. Cornea. 2011;30:1328–35.

    Article  Google Scholar 

  94. Patel SV. Graft survival after penetrating keratoplasty. Am J Ophthalmol. 2011;151:397–8.

    Article  Google Scholar 

  95. Sugar J, et al. Donor risk factors for graft failure in the cornea donor study. Cornea. 2009;28:981.

    Article  Google Scholar 

  96. Dunn SP, et al. The effect of ABO blood incompatibility on corneal transplant failure in conditions with low-risk of graft rejection. Am J Ophthalmol. 2009;147:432–438.e433.

    Article  Google Scholar 

  97. Feizi S, Javadi MA, Kanavi MR, Javadi F. Effect of donor graft quality on clinical outcomes after deep anterior lamellar keratoplasty. Cornea. 2014;33:795–800.

    Article  Google Scholar 

  98. The Writing Committee for the Cornea Donor Study Research Group, et al. Factors predictive of corneal graft survival in the cornea donor study. JAMA Ophthalmol. 2015;133:246.

    Article  Google Scholar 

  99. Banerjee S, Dick AD, Nicholls SM. Factors affecting rejection of second corneal transplants in rats1. Transplantation. 2004;77:492–6.

    Article  Google Scholar 

  100. Kitazawa K, et al. Moderately long-term safety and efficacy of repeat penetrating keratoplasty. Cornea. 2018;37:1255–9.

    Article  Google Scholar 

  101. Al-Mezaine H, Wagoner M. Repeat penetrating keratoplasty: indications, graft survival, and visual outcome. Br J Ophthalmol. 2006;90:324–7.

    Article  CAS  Google Scholar 

  102. Khairallah AS. Outcome of repeat penetrating keratoplasty in eyes with failed penetrating keratoplasty. Saudi Med J. 2016;37:1029–32.

    Article  Google Scholar 

  103. Yalniz-Akkaya Z, et al. Repeat penetrating keratoplasty: indications and prognosis, 1995–2005. Eur J Ophthalmol. 2009;19:362–8.

    Article  Google Scholar 

  104. Thompson RW Jr, Price MO, Bowers PJ, Price FW Jr. Long-term graft survival after penetrating keratoplasty. Ophthalmology. 2003;110:1396–402.

    Article  Google Scholar 

  105. Bachmann B, Taylor RS, Cursiefen C. Corneal neovascularization as a risk factor for graft failure and rejection after keratoplasty: an evidence-based meta-analysis. Ophthalmology. 2010;117:1300–1305.e1307.

    Article  Google Scholar 

  106. Merz PR, Röckel N, Ballikaya S, Auffarth GU, Schmack I. Effects of ranibizumab (Lucentis®) and bevacizumab (Avastin®) on human corneal endothelial cells. BMC Ophthalmol. 2018;18:1–8.

    Article  Google Scholar 

  107. Al-Debasi T, Al-Bekairy A, Al-Katheri A, Al Harbi S, Mansour M. Topical versus subconjunctival anti-vascular endothelial growth factor therapy (Bevacizumab, Ranibizumab and Aflibercept) for treatment of corneal neovascularization. Saudi J Ophthalmol. 2017;31:99–105.

    Article  Google Scholar 

  108. Fasciani R, Mosca L, Giannico MI, Ambrogio SA, Balestrazzi E. Subconjunctival and/or intrastromal bevacizumab injections as preconditioning therapy to promote corneal graft survival. Int Ophthalmol. 2015;35:221–7.

    Article  Google Scholar 

  109. Hos D, et al. Risk of corneal graft rejection after high-risk keratoplasty following fine-needle vessel coagulation of corneal neovascularization combined with bevacizumab: a pilot study. Transplant Dir. 2019;5:e452.

    Article  Google Scholar 

  110. Koenig Y, Bock F, Kruse FE, Stock K, Cursiefen C. Angioregressive pretreatment of mature corneal blood vessels before keratoplasty: fine-needle vessel coagulation combined with anti-VEGFs. Cornea. 2012;31:887–92.

    Article  Google Scholar 

  111. Cursiefen C, et al. Antisense oligonucleotide eye drops against IRS-1 inhibit corneal neovascularization: interim results of a randomized phase II clinical trial. Invest Ophthalmol Vis Sci. 2009;50:4953.

    Google Scholar 

  112. Cursiefen C, et al. Aganirsen antisense oligonucleotide eye drops inhibit keratitis-induced corneal neovascularization and reduce need for transplantation: the I-CAN study. Ophthalmology. 2014;121:1683–92.

    Article  Google Scholar 

  113. Altenburger AE, Bachmann B, Seitz B, Cursiefen C. Morphometric analysis of postoperative corneal neovascularization after high-risk keratoplasty: herpetic versus non-herpetic disease. Graefes Arch Clin Exp Ophthalmol. 2012;250:1663–71.

    Article  Google Scholar 

  114. Serna-Ojeda JC, et al. Long-term outcomes of pediatric penetrating keratoplasty for herpes simplex virus keratitis. Am J Ophthalmol. 2017;173:139–44.

    Article  Google Scholar 

  115. Kuffova L, et al. High-risk corneal graft rejection in the setting of previous corneal herpes simplex virus (HSV)-1 infection. Invest Ophthalmol Vis Sci. 2016;57:1578–87.

    Article  CAS  Google Scholar 

  116. Shiuey EJ, et al. Development of a nomogram to predict graft survival after penetrating keratoplasty. Am J Ophthalmol. 2021;226:32–41.

    Article  Google Scholar 

  117. Whitcup SM, Nussenblatt RB, Price FW Jr, Chan C-C. Expression of cell adhesion molecules in corneal graft failure. Cornea. 1993;12:475–80.

    Article  CAS  Google Scholar 

  118. Tan DT, et al. Penetrating keratoplasty in Asian eyes: the Singapore corneal transplant study. Ophthalmology. 2008;115:975–982.e971.

    Article  Google Scholar 

  119. Banitt M, Lee R. Management of patients with combined glaucoma and corneal transplant surgery. Eye. 2009;23:1972–9.

    Article  CAS  Google Scholar 

  120. Hollander DA, et al. Graft failure after penetrating keratoplasty in eyes with Ahmed valves. Am J Ophthalmol. 2010;150:169–78.

    Article  Google Scholar 

  121. Stewart RM, et al. Effect of glaucoma on corneal graft survival according to indication for penetrating keratoplasty. Am J Ophthalmol. 2011;151:257–262.e251.

    Article  Google Scholar 

  122. Price MO, Thompson RW, Price FW. Risk factors for various causes of failure in initial corneal grafts. Arch Ophthalmol. 2003;121:1087–92.

    Article  Google Scholar 

  123. Massry GG, Assil KK. Pilocarpine-associated allograft rejection in postkeratoplasty patients. Cornea. 1995;14:202–5.

    Article  CAS  Google Scholar 

  124. Konowal A, et al. Irreversible corneal decompensation in patients treated with topical dorzolamide. Am J Ophthalmol. 1999;127:403–6.

    Article  CAS  Google Scholar 

  125. Cahane M, Ashkenazi I, Urinowski E, Avni I. Corneal graft rejection after neodymium-yttrium-aluminum-garnet laser posterior capsulotomy. Cornea. 1992;11:534–7.

    Article  CAS  Google Scholar 

  126. DeBacker CM, El-Naggar S, Sugar J, Lai WW. Effect of neodymium: YAG laser posterior capsulotomy on corneal grafts. Cornea. 1996;15:15–7.

    Article  CAS  Google Scholar 

  127. Lass JH, et al. The effect of donor diabetes history on graft failure and endothelial cell density 10 years after penetrating keratoplasty. Ophthalmology. 2015;122:448–56.

    Article  Google Scholar 

  128. Zhang X, et al. Association of smoking and other risk factors with Fuchs’ endothelial corneal dystrophy severity and corneal thickness. Invest Ophthalmol Vis Sci. 2013;54:5829–35.

    Article  Google Scholar 

  129. Jurkunas UV, Bitar MS, Funaki T, Azizi B. Evidence of oxidative stress in the pathogenesis of fuchs endothelial corneal dystrophy. Am J Pathol. 2010;177:2278–89.

    Article  CAS  Google Scholar 

  130. Karadag R, et al. Survival of primary penetrating keratoplasty in children. Am J Ophthalmol. 2016;171:95–100.

    Article  Google Scholar 

  131. Alice LY, et al. Perioperative and postoperative risk factors for corneal graft failure. Clin Ophthalmol. 2014;8:1641.

    Google Scholar 

  132. Hayashi T, et al. Pars plana vitrectomy combined with penetrating keratoplasty and transscleral-sutured intraocular lens implantation in complex eyes: a case series. BMC Ophthalmol. 2020;20:369.

    Article  CAS  Google Scholar 

  133. Rahman I, Carley F, Hillarby C, Brahma A, Tullo A. Penetrating keratoplasty: indications, outcomes, and complications. Eye. 2009;23:1288–94.

    Article  CAS  Google Scholar 

  134. Zhang Y, et al. Indications and outcomes of penetrating keratoplasty in infants and children of Beijing, China. Cornea. 2018;37:1243–8.

    Article  Google Scholar 

  135. Majander A, Kivelä TT, Krootila K. Indications and outcomes of keratoplasties in children during a 40‐year period. Acta Ophthalmol. 2016;94:618–24.

    Article  Google Scholar 

  136. Sugar A, et al. Factors associated with corneal graft survival in the cornea donor study. JAMA Ophthalmol. 2015;133:246–54.

    Article  Google Scholar 

  137. Young AL, Kam K, Jhanji V, Cheng LL, Rao SK. A new era in corneal transplantation: paradigm shift and evolution of techniques. Hong Kong Med J. 2012;18:509–16.

    Google Scholar 

  138. Olson RJ. Variation in corneal graft size related to trephine technique. Arch Ophthalmol. 1979;97:1323–5.

    Article  CAS  Google Scholar 

  139. Wilson SE, Bourne WM. Effect of recipient-donor trephine size disparity on refractive error in keratoconus. Ophthalmology. 1989;96:299–305.

    Article  CAS  Google Scholar 

  140. Javadi MA, Mohammadi MJ, Mirdehghan SA, Sajjadi SH. A comparison between donor-recipient corneal size and its effect on the ultimate refractive error induced in keratoconus. Cornea. 1993;12:401–5.

    Article  CAS  Google Scholar 

  141. Kuryan J, Channa P. Refractive surgery after corneal transplant. Curr Opin Ophthalmol. 2010;21:259–64.

    Article  Google Scholar 

  142. Lanier JD, Bullington RH, Prager TC. Axial length in keratoconus. Cornea. 1992;11:250–4.

    Article  CAS  Google Scholar 

  143. Javadi MA, et al. Comparison of the effect of three suturing techniques on postkeratoplasty astigmatism in keratoconus. Cornea. 2006;25:1029–33.

    Article  Google Scholar 

  144. Solano JM, Hodge DO, Bourne WM. Keratometric astigmatism after suture removal in penetrating keratoplasty: double running versus single running suture techniques. Cornea. 2003;22:716–20.

    Article  Google Scholar 

  145. Romano V, Iovieno A, Parente G, Soldani AM, Fontana L. Long-term clinical outcomes of deep anterior lamellar keratoplasty in patients with keratoconus. Am J Ophthalmol. 2015;159:505–11.

    Article  Google Scholar 

  146. Javadi MA, Feizi S, Yazdani S, Mirbabaee F. Deep anterior lamellar keratoplasty versus penetrating keratoplasty for keratoconus: a clinical trial. Cornea. 2010;29:365–71.

    Article  Google Scholar 

  147. Feizi S, Zare M. Current approaches for management of postpenetrating keratoplasty astigmatism. J Ophthalmol. 2011;2011:708736.

    Article  Google Scholar 

  148. Dumitrescu O-M, Istrate S, Macovei M-L, Gheorghe AG. Intraocular pressure measurement after penetrating keratoplasty. Diagnostics. 2022;12:234.

    Article  Google Scholar 

  149. McGhee C. Pharmacokinetics of ophthalmic corticosteroids. Br J Ophthalmol. 1992;76:681.

    Article  CAS  Google Scholar 

  150. Abud TB, Di Zazzo A, Kheirkhah A, Dana R. Systemic immunomodulatory strategies in high-risk corneal transplantation. J Ophthal Vis Res. 2017;12:81.

    Article  Google Scholar 

  151. Shimazaki J, Iseda A, Satake Y, Shimazaki-Den S. Efficacy and safety of long-term corticosteroid eye drops after penetrating keratoplasty: a prospective, randomized, clinical trial. Ophthalmology. 2012;119:668–73.

    Article  Google Scholar 

  152. Ang M, Soh Y, Htoon HM, Mehta JS, Tan D. Five-year graft survival comparing Descemet stripping automated endothelial keratoplasty and penetrating keratoplasty. Ophthalmology. 2016;123:1646–52.

    Article  Google Scholar 

  153. Jordan CS, Price MO, Trespalacios R, Price FW. Graft rejection episodes after Descemet stripping with endothelial keratoplasty: part one: clinical signs and symptoms. Br J Ophthalmol. 2009;93:387–90.

    Article  CAS  Google Scholar 

  154. Niederkorn JY. High risk corneal allografts and why they lose their immune privilege. Curr Opin Allergy Clin Immunol. 2010;10:493.

    Article  Google Scholar 

  155. Niederkorn JY. Corneal transplantation and immune privilege. Int Rev Immunol. 2013;32:57–67.

    Article  CAS  Google Scholar 

  156. Hudde T, Minassian D, Larkin D. Randomised controlled trial of corticosteroid regimens in endothelial corneal allograft rejection. Br J Ophthalmol. 1999;83:1348–52.

    Article  CAS  Google Scholar 

  157. Dunn SP, et al. Corneal graft rejection ten years after penetrating keratoplasty in the cornea donor study. Cornea. 2014;33:1003.

    Article  Google Scholar 

  158. Armitage WJ, et al. High-risk corneal transplantation: recent developments and future possibilities. Transplantation. 2019;103:2468.

    Article  CAS  Google Scholar 

  159. Holland EJ, et al. Systemic immunosuppression in ocular surface stem cell transplantation: results of a 10-year experience. Cornea. 2012;31:655–61.

    Article  Google Scholar 

  160. Streilein JW. Immunobiology and immunopathology of corneal transplantation. Chem Immunol. 1999;73:186–206.

    CAS  Google Scholar 

  161. Barbarino JM, Staatz CE, Venkataramanan R, Klein TE, Altman RB. PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenet Genomics. 2013;23:563–85.

    Article  CAS  Google Scholar 

  162. Fahr A. Cyclosporin clinical pharmacokinetics. Clin Pharmacokinet. 1993;24:472–95.

    Article  CAS  Google Scholar 

  163. Thomson A, Bonham C, Zeevi A. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther Drug Monit. 1995;17:584–91.

    Article  CAS  Google Scholar 

  164. Kharod-Dholakia B, Randleman JB, Bromley JG, Stulting RD. Prevention and treatment of corneal graft rejection: current practice patterns of the Cornea Society (2011). Cornea. 2015;34:609–14.

    Article  Google Scholar 

  165. Xie L, Shi W, Wang Z, Bei J, Wang S. Prolongation of corneal allograft survival using cyclosporine in a polylactide-co-glycolide polymer. Cornea. 2001;20:748–52.

    Article  CAS  Google Scholar 

  166. Thompson P, Xu D, Brunette I, Chen H. Combined effect of rapamycin and cyclosporine in the prevention of rat corneal allograft rejection. Transplant Proc. 1998;4:1033–5.

    Article  Google Scholar 

  167. Fu H, Larkin DF, George AJ. Immune modulation in corneal transplantation. Transplant Rev. 2008;22:105–15.

    Article  Google Scholar 

  168. Williams KA, Coster DJ. Use of monoclonal antibodies in corneal transplantation. Clin Immunotherapeut. 1994;2:32–41.

    Article  Google Scholar 

  169. Thiel M, Kaufmann C, Coster D, Williams K. Antibody-based immunosuppressive agents for corneal transplantation. Eye. 2009;23:1962–5.

    Article  CAS  Google Scholar 

  170. Singh S, et al. Monoclonal antibodies: a review. Curr Clin Pharmacol. 2018;13:85–99.

    Article  Google Scholar 

  171. Thiel MA, Coster DJ, Williams KA. The potential of antibody‐based immunosuppressive agents for corneal transplantation. Immunol Cell Biol. 2003;81:93–105.

    Article  CAS  Google Scholar 

  172. Merediz S, Zhang E-P, Wittig B, Hoffmann F. Ballistic transfer of minimalistic immunologically defined expression constructs for IL4 and CTLA4 into the corneal epithelium in mice after orthotopic corneal allograft transplantation. Graefes Arch Clin Exp Ophthalmol. 2000;238:701–7.

    Article  CAS  Google Scholar 

  173. Bluestone JA, St Clair EW, Turka LA. CTLA4Ig: bridging the basic immunology with clinical application. Immunity. 2006;24:233–8.

    Article  CAS  Google Scholar 

  174. Thiel MA, et al. Local or short‐term systemic costimulatory molecule blockade prolongs rat corneal allograft survival. Clin Exp Ophthalmol. 2005;33:176–80.

    Article  Google Scholar 

  175. Wu X-S, et al. Tocilizumab promotes corneal allograft survival in rats by modulating Treg-Th17 balance. Int J Ophthalmol. 2019;12:1823.

    Article  Google Scholar 

  176. Hamrah P, et al. Local treatment with alpha-melanocyte stimulating hormone reduces corneal allorejection. Transplantation. 2009;88:180.

    Article  CAS  Google Scholar 

  177. Qian Y, Dekaris I, Yamagami S, Dana MR. Topical soluble tumor necrosis factor receptor type I suppresses ocular chemokine gene expression and rejection of allogeneic corneal transplants. Arch Ophthalmol. 2000;118:1666–71.

    Article  CAS  Google Scholar 

  178. Amouzegar A, Chauhan SK. Effector and regulatory T cell trafficking in corneal allograft rejection. Mediat Inflamm. 2017;2017:8670280.

    Article  Google Scholar 

  179. Donnenfeld ED, et al. Safety of lifitegrast ophthalmic solution 5.0% in patients with dry eye disease: a 1-year, multicenter, randomized, placebo-controlled study. Cornea. 2016;35:741.

    Article  Google Scholar 

  180. Semba CP, Gadek TR. Development of lifitegrast: a novel T-cell inhibitor for the treatment of dry eye disease. Clin Ophthalmol. 2016;10:1083.

    Article  CAS  Google Scholar 

  181. Ma D, Mellon J, Niederkorn JY. Oral immunisation as a strategy for enhancing corneal allograft survival. Br J Ophthalmol. 1997;81:778–84.

    Article  CAS  Google Scholar 

  182. Plšková J, Holáň V, Filipec M, Forrester JV. Lymph node removal enhances corneal graft survival in mice at high risk of rejection. BMC Ophthalmol. 2004;4:1–7.

    Article  Google Scholar 

  183. Chen L, et al. Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nat Med. 2004;10:813–5.

    Article  CAS  Google Scholar 

  184. Gong N, Pleyer U, Volk H, Ritter T. Effects of local and systemic viral interleukin-10 gene transfer on corneal allograft survival. Gene Ther. 2007;14:484–90.

    Article  CAS  Google Scholar 

  185. Nosov M, et al. Role of lentivirus‐mediated overexpression of programmed death‐ligand 1 on corneal allograft survival. Am J Transplant. 2012;12:1313–22.

    Article  CAS  Google Scholar 

  186. Pleyer U, et al. Survival of corneal allografts following adenovirus-mediated gene transfer of interleukin-4. Graefes Arch Clin Exp Ophthalmol. 2000;238:531–6.

    Article  CAS  Google Scholar 

  187. Kocaba V, Colica C, Rabilloud M, Burillon C. Predicting corneal graft rejection by confocal microscopy. Cornea. 2015;34:S61–4.

    Article  Google Scholar 

  188. Webster AC, Pankhurst T, Rinaldi F, Chapman JR, Craig JC. Monoclonal and polyclonal antibody therapy for treating acute rejection in kidney transplant recipients: a systematic review of randomized trial data. Transplantation. 2006;81:953–65.

    Article  CAS  Google Scholar 

  189. Hashemian MN, et al. Topical tacrolimus as adjuvant therapy to corticosteroids in acute endothelial graft rejection after penetrating keratoplasty: a randomized controlled trial. Cornea. 2018;37:307–12.

    Article  Google Scholar 

  190. Reinhard T, Sundmacher R. Adjunctive intracameral application of corticosteroids in patients with endothelial immune reactions after penetrating keratoplasty: a pilot study. Transpl Int. 2002;15:81–8.

    Article  CAS  Google Scholar 

  191. Maris PJGJ, Correnti AJ, Donnenfeld ED. Intracameral triamcinolone acetonide as treatment for endothelial allograft rejection after penetrating keratoplasty. Cornea. 2008;27:847–50.

    Article  Google Scholar 

  192. Kim BZ, et al. New Zealand trends in corneal transplantation over the 25 years 1991-2015. Br J Ophthalmol. 2017;101:834–8.

    Article  Google Scholar 

  193. Alldredge OC, Krachmer JH. Clinical types of corneal transplant rejection: their manifestations, frequency, preoperative correlates, and treatment. Arch Ophthalmol. 1981;99:599–604.

    Article  CAS  Google Scholar 

  194. Hill JC, Maske R, Watson P. Corticosteroids in corneal graft rejection: oral versus single pulse therapy. Ophthalmology. 1991;98:329–33.

    Article  CAS  Google Scholar 

  195. Randleman JB, Stulting RD. Prevention and treatment of corneal graft rejection: current practice patterns (2004). Cornea. 2006;25:286–90.

    Article  Google Scholar 

  196. Poon A, Constantinou M, Lamoureux E, Taylor HR. Topical Cyclosporin A in the treatment of acute graft rejection: a randomized controlled trial. Clin Exp Ophthalmol. 2008;36:415–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farideh Doroodgar .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Femtosecond-based keratoplasty (MP4 5468 kb)

Large graft in keratoconus to ensure the greatest fit (MP4 5026 kb)

Regraft in a high-risk case (MP4 8284 kb)

Penetrating Keratoplasty in a case with fungal infection (MP4 9190 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doroodgar, F., Niazi, S., Hashemi, H., Javadi, M.A. (2023). Main Issues to Overcome in Modern Penetrating Keratoplasty. In: Alió, J.L., del Barrio, J.L.A. (eds) Modern Keratoplasty. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-32408-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32408-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32407-9

  • Online ISBN: 978-3-031-32408-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics