Skip to main content

Risk, Hazard, and Exposure Time in Hazmat Location and Routing

  • Chapter
  • First Online:
Uncertainty in Facility Location Problems

Abstract

Hazardous materials such as fuel, solvents, organic waste from hospitals, used batteries, explosives, and nuclear waste need to be transported to and from the facilities that use, produce, and dispose of them. Managing these transports requires a design that alleviates negative effects of these activities, such as the loss of lives, environmental damage, and the destruction of property. Despite the large body of literature addressing numerous aspects regarding hazardous materials, there is no clear consensus on how potential adverse effects should be measured when optimizing facility location and route design. Our analysis commences with a look at the primary stakeholders in these activities: the population that is potentially affected by transportation, the firms that pay for it, and the government regulator, whose task is to protect the population at large. This chapter proposes two new indicators related to these activities, which are easy to compute, avoid the use of unreliable very low probability estimations, take care of the regulatory agencies and public concern, and, in our view, are more understandable to the public. Mathematical programming problems that integrate criteria for all stakeholders are formulated and solved. The methodology is then applied to a real case in order to determine an optimal transport route for the transport of hazardous materials in and out of the city of Santiago, Chile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abkowitz, M., Cheng, P., & Lepofsky, M. (1990). Use of geographic information systems in managing hazardous materials shipments. Transportation Research Record, 1261, 35–43.

    Google Scholar 

  • Abkowitz, M., Lepofsky, M., & Cheng, P. (1992). Selecting criteria for designating hazardous materials highway routes. Transportation Research Record, 1333, 30–35.

    Google Scholar 

  • Alp, E. (1995). Risk-based transportation planning practice: Overall methodology and a case example. Infor, 33(1), 4–19.

    Google Scholar 

  • Arlikatti, S., Lindell, M. K., Prater, C. S., & Zhang, Y. (2006). Risk area accuracy and hurricane evacuation expectations of coastal residents. Environment and Behavior, 38(2), 226–247.

    Article  Google Scholar 

  • Asgari, N., Rajabi, M., Jamshidi, M., Khatami, M., & Farahani, R. Z. (2017). A memetic algorithm for a multi-objective obnoxious waste location-routing problem: A case study. Annals of Operations Research, 250(2), 279–308.

    Article  Google Scholar 

  • Batta, R., & Chiu, S. (1988). Optimal obnoxious paths on network: Transportation of hazardous materials. Operations Research, 36, 84–92.

    Article  Google Scholar 

  • Beneventti, D., Bronfman, A., Paredes-Belmar, G., & Marianov, V. (2019). A multi-product maximin hazmat routing-location problem with multiple origin-destination pairs. Journal of Cleaner Production, 240, 118193.

    Article  Google Scholar 

  • Bianco, L., Caramia, M., & Giordani, S. (2009). A bilevel flow model for hazmat transportation network design. Transportation Research Part C, 17, 175–196.

    Article  Google Scholar 

  • Brainard, J. S., Lovett, A. A., & Parfitt, P. (1996). Assessing hazardous waste transport risks using a GIS. Geographical Information Systems, 10(7), 831–849.

    Article  Google Scholar 

  • Brilly, M., Polic, M., Castelli, F., & Caragliano, S. (2005). Public perception of flood risks, flood forecasting and mitigation. Natural Hazards and Earth System Sciences, 5(3), 345–355.

    Article  Google Scholar 

  • Brody, S. D., Peck, B. M., & Highfield, W. E. (2004). Examining localized patterns of air quality perception in Texas: A spatial and statistical analysis. Risk Analysis, 24(6), 1561–1574.

    Article  Google Scholar 

  • Bronfman, A., Marianov, V., Paredes-Belmar, G., & Lüer-Villagra, A. (2015). The maximin HAZMAT routing problem. European Journal of Operational Research, 241(1), 15–27.

    Article  Google Scholar 

  • Bruglieri, M., Cappanera, P., & Nonato, M. (2014). The gateway location problem: Assessing the impact of candidate site selection policies. Discrete Applied Mathematics, 165, 96–111.

    Article  Google Scholar 

  • Bula, G. A., Afsar, H. M., González, F. A., Prodhon, C., & Velasco, N. (2019). Bi-objective vehicle routing problem for hazardous materials transportation. Journal of Cleaner Production, 206, 976–986.

    Article  Google Scholar 

  • Cappanera, P., Gallo, G., & Maffioli, F. (2003). Discrete facility location and routing of obnoxious activities. Discrete Applied Mathematics, 133(1–3), 3–28.

    Article  Google Scholar 

  • Caramia, M., Giordani, S., & Iovanella, A. (2010). On the selection of k routes in multiobjective hazmat route planning. Journal of Management Mathematics, 21, 239–251.

    Google Scholar 

  • Carotenuto, P., Giordani, S., & Ricciardelli, S. (2007). Finding minimum and equitable risk routes for hazmat shipments. Computers and Operations Research, 34(5), 1304–1327.

    Article  Google Scholar 

  • Chang, N.-B., Lu, H. Y., & Wei, Y. L. (1997). GIS technology for vehicle routing and scheduling in solid waste collection systems. Journal of Environmental Engineering, 123(9), 901–910.

    Article  Google Scholar 

  • Chen, Y.-W., Wang, C.-H., & Lin, S.-J. (2008). A multi-objective geographic information system for route selection of nuclear waste transport. Omega, 36(3), 363–372.

    Article  Google Scholar 

  • Church, R. L., & Drezner, Z. (2022). Review of obnoxious facilities location problems. Computers and Operations Research, 138, 105468.

    Article  Google Scholar 

  • Cohon, J. L. (1978). Chapter 6: Techniques for generating noninferior solutions. Multiobjective Programming and Planning. Academic Press.

    Google Scholar 

  • Colebrook, M., & Sicilia, J. (2013). Hazardous facility location models on networks. Handbook of OR/MS Models in Hazardous Materials Transportation (pp. 155–186). Springer.

    Book  Google Scholar 

  • Current, J., & Ratick, S. (1995). A model to assess risk, equity and efficiency in facility location and transportation of hazardous materials. Location Science, 3(3), 187–201.

    Article  Google Scholar 

  • Current, J. R., & Schilling, D. A. (1990). Analysis of errors due to demand data aggregation in the set covering and maximal covering location problems. Geographical Analysis, 22(2), 116–126.

    Article  Google Scholar 

  • Daskin, M. S. (2011). Network and discrete location: Models, algorithms, and applications. Wiley.

    Google Scholar 

  • Ditta, A., Figueroa, O., Galindo, G., & Yie-Pinedo, R. (2019). A review on research in transportation of hazardous materials. Socio-Economic Planning Sciences, 68, 100665.

    Article  Google Scholar 

  • Elliott, S. J., Cole, D. C., Krueger, P., Voorberg, N., & Wakefield, S. (1999). The power of perception: Health risk attributed to air pollution in an urban industrial neighbourhood. Risk Analysis, 19(4), 621–634.

    Article  Google Scholar 

  • Emir-Farinas, H., & Francis, R. L. (2005). Demand point aggregation for planar covering location models. Annals of Operations Research, 136(1), 175–192.

    Article  Google Scholar 

  • EPA. (2012). Hazardous waste listings: A user-friendly reference document. September 2012. Available online at https://www.epa.gov/sites/production/files/2016-01/documents/hw_listref_sep2012.pdf, last accessed on 11/30/2022.

  • Erkut, E., & Gzara, F. (2008). Solving the hazmat transport network design problem. Computers and Operations Research, 35, 2234–2247.

    Article  Google Scholar 

  • Erkut, E., & Ingolfsson, A. (2000). Catastrophe avoidance models for hazardous materials route planning. Transportation Science, 34(2), 165–179.

    Article  Google Scholar 

  • Erkut, E., & Ingolfsson, A. (2005). Transport risk models for hazardous materials: Revisited. Operations Research Letters, 33, 81–89.

    Article  Google Scholar 

  • Erkut, E., & Neuman, S. (1989). Analytical models for locating undersireble facilities. European Journal of Operational Research, 40, 275–291.

    Article  Google Scholar 

  • Erkut, E., & Verter, V. (1995). A framework for hazardous materials transport risk assessment. Risk Analysis, 15(5), 589–601.

    Article  Google Scholar 

  • Erkut, E., Tjandra, S. A., & Verter, V. (2007). Hazardous materials transportation. Chapter 9. In C. Barnhart & G. Laporte (Eds.), Handbooks in operations research and management science (pp. 539–621). Elsevier.

    Google Scholar 

  • Fernández, J., Fernández, P., & Pelegrín, B. (2000). A continuous location model for siting a non-noxious undesirable facility within a geographical region. European Journal of Operational Research, 121(2), 259–274.

    Article  Google Scholar 

  • Fontaine, P., Crainic, T. G., Gendreau, M., & Minner, S. (2020). Population-based risk equilibration for the multimode hazmat transport network design problem. European Journal of Operational Research, 284(1), 188–200.

    Article  Google Scholar 

  • Francis, R. L., Lowe, T. J., & Tamir, A. (2004). Demand point aggregation for location models. In Z. Drezner & H. W. Hamacher (Eds.), Facility location: Application and theory (pp. 207–230). Springer.

    Google Scholar 

  • Frank, W. C., Thill, J.-C., & Batta, R. (2000). Spatial decision support system for hazardous material truck routing. Transportation Research Part C, 8, 337–359.

    Article  Google Scholar 

  • Ghaderi, A., & Burdett, R. L. (2019). An integrated location and routing approach for transporting hazardous materials in a bi-modal transportation network. Transportation Research Part E: Logistics and Transportation Review, 127, 49–65.

    Article  Google Scholar 

  • Giannikos, I. (1998). A multiobjective programming model for locating treatment sites and routing hazardous wastes. European Journal of Operational Research, 104(2), 333–342.

    Article  Google Scholar 

  • Gopalan, R., Kolluri, K. S., Batta, R., & Karwan, M. H. (1990). Modeling equity of risk in the transportation of hazardous materials. Operations Research, 38(6), 961–975.

    Article  Google Scholar 

  • Hassanpour, S. T., Ke, G. Y., & Tulett, D. M. (2021). A time-dependent location-routing problem of hazardous material transportation with edge unavailability and time window. Journal of Cleaner Production, 322, 128951.

    Article  Google Scholar 

  • Heitz, C., Spaeter, S., Auzet, A.-V., & Glatron, S. (2009). Local stakeholders’ perception of muddy flood risk and implications for management approaches: A case study in Alsace (France). Land Use Policy, 26(2), 443–451.

    Article  Google Scholar 

  • Helander, M. E., & Melachrinoudis, E. (1997). Facility location and reliable route planning in hazardous material transportation. Transportation Science, 31(3), 216–226.

    Article  Google Scholar 

  • Holeczek, N. (2019). Hazardous materials truck transportation problems: A classification and state of the art literature review. Transportation Research Part D: Transport and Environment, 69, 305–328.

    Article  Google Scholar 

  • Holeczek, N. (2021). Analysis of different risk models for the hazardous materials vehicle routing problem in urban areas. Cleaner Environmental Systems, 2, 100022.

    Article  Google Scholar 

  • Hung, H. C., & Wang, T. W. (2011). Determinants and mapping of collective perceptions of technological risk: The case of the second nuclear power plant in Taiwan. Risk Analysis, 31(4), 668–683.

    Article  Google Scholar 

  • Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2003). Vehicle dispatching with time-dependent travel times. European Journal of Operational Research, 144(2), 379–396.

    Article  Google Scholar 

  • Jonkman, S. N., van Gelder, P. H. A. J. M., & Vrijling, J. K. (2003). An overview of quantitative risk measures for loss of life and economic damage. Journal of Hazardous Materials, 99, 1–30.

    Article  Google Scholar 

  • Kara, B., & Verter, V. (2004). Designing a road network for hazardous materials transportation. Transportation Science, 38(2), 188–196.

    Article  Google Scholar 

  • Kim, M., Miller-Hooks, E., & Nair, R. (2011). A geographic information system-based real-time decision support framework for routing vehicles carrying hazardous materials. Journal of Intelligent Transportation Systems, 15(1), 28–41.

    Article  Google Scholar 

  • Lepofsky, M., Abkowitz, M., & Cheng, P. (1993). Transportation hazard analysis in an integrated GIS environment. Journal of Transportation Engineering, 119(2), 239–254.

    Article  Google Scholar 

  • Li, R., & Leung, Y. (2011). Multi-objective route planning for dangerous goods using compromise programming. Journal of Geographical Systems, 13(3), 249–271.

    Article  Google Scholar 

  • Lima, M. L. (2004). On the influence of risk perception on mental health: Living near an incinerator. Journal of Environmental Psychology, 24(1), 71–84.

    Article  Google Scholar 

  • Lindell, M. K., & Perry, R. W. (2000). Household adjustment to earthquake hazard a review of research. Environment and Behavior, 32(4), 461–501.

    Article  Google Scholar 

  • Lindner-Dutton, L., Batta, R., & Karwan, M. H. (1991). Equitable sequencing of a given set of hazardous materials shipments. Transportation Science, 25(2), 124–137.

    Article  Google Scholar 

  • List, G. F., & Mirchandani, P. B. (1991). An integrated network/planar multiobjective model for routing and siting for hazardous materials and wastes. Transportation Science, 25, 146–156.

    Article  Google Scholar 

  • Lovett, A. A., Parfitt, J. P., & Brainard, J. S. (1997). Using GIS in risk analysis: A case study of hazardous waste transport. Risk Analysis, 17(5), 625–633.

    Article  Google Scholar 

  • Ma, C., Zhou, J., Xu, X. D., Pan, F., & Xu, J. (2020). Fleet scheduling optimization of hazardous materials transportation: A literature review. Journal of Advanced Transportation, Article #4079617. Available online at doi:https://doi.org/10.1155/2020/4079617, last accessed on 11/30/2022.

  • Malandraki, C., & Daskin, M. S. (1992). Time dependent vehicle routing problems: Formulations, properties and heuristic algorithms. Transportation Science, 26(3), 185–200.

    Article  Google Scholar 

  • Marianov, V., & ReVelle, C. (1998). Linear, non-approximated models for optimal routing in hazardous environment. Journal of the Operational Research Society, 49, 157–164.

    Article  Google Scholar 

  • Melachrinoudis, E. (2011). The location of undesirable facilities. In H. A. Eiselt & V. Marianov (Eds.), Foundations of location analysis (pp. 207–239). Springer.

    Chapter  Google Scholar 

  • Miceli, R., Sotgiu, I., & Settanni, M. (2008). Disaster preparedness and perception of flood risk: A study in an alpine valley in Italy. Journal of Environmental Psychology, 28(2), 164–173.

    Article  Google Scholar 

  • Mohri, S. S., Mohammadi, M., Gendreau, M., Pirayesh, A., Ghasemaghaei, A., & Salehi, V. (2022). Hazardous material transportation problems: A comprehensive overview of models and solution approaches. European Journal of Operational Research, 302(1), 1–38.

    Article  Google Scholar 

  • Pijawka, K. D., Foote, S., & Soesilo, A. (1985). Risk assessment of transporting hazardous material: Route analysis and hazard management. Transportations Research Record, 1020, 1–6.

    Google Scholar 

  • Prince2. (2009) Prince2 glossary of terms. Available online at https://www.stakeholdermap.com/prince2/prince2-glossary-R-records.html, last accessed on 11/30/2022.

  • Rabbani, M., Heidari, R., Farrokhi-Asl, H., & Rahimi, N. (2018). Using metaheuristic algorithms to solve a multi-objective industrial hazardous waste location-routing problem considering incompatible waste types. Journal of Cleaner Production, 170, 227–241.

    Article  Google Scholar 

  • ReVelle, C., Cohon, J., & Shobrys, D. (1991). Simultaneous sitting and routing in the disposal of hazardous wastes. Transportation Science, 25, 138–145.

    Article  Google Scholar 

  • Saccomanno, F. F., & Chan, A. (1985). Economic evaluation of routing strategies for hazardous road shipments. Transportation Research Record, 1020, 12–18.

    Google Scholar 

  • Saccomanno, F. F., & Shortreed, J. H. (1993). Hazardous material transport risk: Societal and individual perspectives. Journal of Transportation Engineering, 119, 177–188.

    Article  Google Scholar 

  • Sadigh, A. N., & Fallah, H. (2009). Demand point aggregation analaysis for location models. Chapter 22. In R. Zanjirani Farahani & M. Hekmatfar (Eds.), Facility location (pp. 523–534). Physica.

    Chapter  Google Scholar 

  • Samanlioglu, F. (2013). A multi-objective mathematical model for the industrial hazardous waste location-routing problem. European Journal of Operational Research, 226(2), 332–340.

    Article  Google Scholar 

  • Sherali, H. D., Brizendine, L. D., Glickman, T. S., & Subramanian, S. (1997). Low probality - high consecuence considerations in routing hazardous material shipments. Transportation Science, 31(3), 237–251.

    Article  Google Scholar 

  • Sivakumar, R. A., Batta, R., & Karwan, M. H. (1993). A network-based model for transporting extremely hazardous materials. Operation Research Letters, 13(2), 85–93.

    Article  Google Scholar 

  • Sivakumar, R. A., Batta, R., & Karwan, M. H. (1995). A multiple route conditional risk model for transporting hazardous materials. Information Systems and Operational Research, 33(1), 20–33.

    Article  Google Scholar 

  • The Britannica Dictionary. (2022). Available online at https://www.britannica.com/dictionary/hazard, last accessed on 12/1/2022.

  • U.S. Department of Transportation. (2022) Pipeline and Hazardous Materials Safety Administration. Office of Hazardous Material Safety. Available online at https://portal.phmsa.dot.gov/analytics/saw.dll?Portalpages&PortalPath=%2Fshared%2FPublic%20Website%20Pages%2F_portal%2F10%20Year%20Incident%20Summary%20Reports, last accessed on 11/30/2022.

  • Verter, V., & Kara, B. Y. (2008). A path-based approach for hazmat transport network design. Management Science, 54(1), 29–40.

    Article  Google Scholar 

  • Wachinger, G., Renn, O., Begg, C., & Kuhlicke, C. (2013). The risk perception paradox—Implications for governance and communication of natural hazards. Risk Analysis, 33(6), 1049–1065.

    Article  Google Scholar 

  • Zero, L., Bersani, C., Paolucci, M., & Sacile, R. (2019). Two new approaches for the bi-objective shortest path with a fuzzy objective applied to HAZMAT transportation. Journal of Hazardous Materials, 375, 96–106.

    Article  Google Scholar 

  • Zhao, J., & Zhao, J. (2010). Model and algorithm for hazardous waste location-routing problem. In J. Zhang, L. Xu, X. Zhang, & M. Jian (Eds.), ICLEM 2010: Logistics for sustained economic development: Infrastructure, information, integration (pp. 2843–2849). American Society of Civil Engineers.

    Google Scholar 

  • Ziaei, Z., & Jabbarzadeh, A. (2021). A multi-objective robust optimization approach for green location-routing planning of multi-modal transportation systems under uncertainty. Journal of Cleaner Production, 291, 125293.

    Article  Google Scholar 

  • Zografos, K. G., & Davis, C. F. (1989). Multi-objective programming approach for routing hazardous materials. Journal of Transportation Engineering, 115(6), 661–673.

    Article  Google Scholar 

  • Zografos, K. G., & Samara, S. (1989). A combined location-routing model for hazardous waste transportation and disposal. Transportation Research Record, 1245, 52–59.

    Google Scholar 

Download references

Acknowledgments

This work was in part supported by FONDECYT grant 1220047; grants ANID PIA/PUENTE AFB220003; and Research Center for Integrated Disaster Risk Management (CIGIDEN) ANID/FONDAP/15110017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Marianov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bronfman, A., Paredes-Belmar, G., Marianov, V., Eiselt, H.A. (2023). Risk, Hazard, and Exposure Time in Hazmat Location and Routing. In: Eiselt, H.A., Marianov, V. (eds) Uncertainty in Facility Location Problems. International Series in Operations Research & Management Science, vol 347. Springer, Cham. https://doi.org/10.1007/978-3-031-32338-6_2

Download citation

Publish with us

Policies and ethics