Skip to main content

Development Methodology of Cable-Driven Parallel Robots Intended for Functional Rehabilitation

  • Conference paper
  • First Online:
Cable-Driven Parallel Robots (CableCon 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 132))

Included in the following conference series:

  • 411 Accesses

Abstract

This paper proposes a methodology for the development of cable-driven parallel robots (CDPRs) for functional rehabilitation purposes, starting from the requirements identification to the experimental validation of the designed prototype. A study of the task to be assisted by the robot is first presented, followed by the formulation of an optimization problem leading to the selection of the optimal robot structure. Later, once the prototype is designed, its control design constitutes the final step of the development. This methodology has been experimentally validated on two types of CDPRs, namely, a fully constrained planar robot and an under-constrained spatial robot. This approach can be extended to incorporate other fields of application other than functional rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jin, X., et al.: Upper limb rehabilitation using a planar cable-driven parallel robot with various rehabilitation strategies. In: Pott, A., Bruckmann, T. (eds.) Cable-Driven Parallel Robots. MMS, vol. 32, pp. 307–321. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09489-2_22

    Chapter  Google Scholar 

  2. Qian, S., Zi, B., Shang, W.-W., Xu, Q.-S.: A review on cable-driven parallel robots. Chin. J. Mech. Eng. 31(1), 1–11 (2018)

    Article  Google Scholar 

  3. Xiong, H., Diao, X.: A review of cable-driven rehabilitation devices. Disabi. Rehabil. Assistive Technol. 15(8), 885–897 (2020)

    Article  Google Scholar 

  4. Pott, A., Bruckmann, T. (eds.): Cable-driven parallel robots. MMS, vol. 32. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09489-2

    Book  Google Scholar 

  5. Li, Y., Xu, Q.: GA-based multi-objective optimal design of a planar 3-DOF cable-driven parallel manipulator : 2006 IEEE International Conference on Robotics and Biomimetics, ROBIO 2006. In: 2006 IEEE International Conference on Robotics and Biomimetics, ROBIO 2006, pp. 1360–1365 (2006)

    Google Scholar 

  6. Fattah, A., Agrawal, S.K.: On the design of cable-suspended planar parallel robots. J. Mech. Des. 127(5), 1021–1028 (2004)

    Article  Google Scholar 

  7. Hussein, H., Santos, J.C., Gouttefarde, M.: Geometric optimization of a large scale CDPR operating on a building facade. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5117–5124 (2018)

    Google Scholar 

  8. Laribi, M.A., Carbone, G., Zeghloul, S.: On the optimal design of cable driven parallel robot with a prescribed workspace for upper limb rehabilitation tasks. J. Bionic Eng. 16(3), 503–513 (2019)

    Article  Google Scholar 

  9. Hwang, S.W., Bak, J.-H., Yoon, J., Park, J.H., Park, J.-O.: Trajectory generation to suppress oscillations in under-constrained cable-driven parallel robots. J. Mech. Sci. Technol. 30(12), 5689–5697 (2016). https://doi.org/10.1007/s12206-016-1139-9

    Article  Google Scholar 

  10. Fortin-Côté, A., Cardou, P., Campeau-Lecours, A.: Improving cable driven parallel robot accuracy through angular position sensors. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4350–4355 (2016)

    Google Scholar 

  11. Picard, E., Caro, S., Claveau, F., Plestan, F.: Pulleys and force sensors influence on payload estimation of cable-driven parallel robots. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018) (2018)

    Google Scholar 

  12. Khan, S.B., Rahman, M.H., Haque, M.O., Rahman, E.: Effectiveness of task oriented physiotherapy along with conventional physiotherapy for patients with stroke. Int. J. Neurol. Phys. Ther. 5(2), 37–41 (2019)

    Article  Google Scholar 

  13. Ennaiem, F., et al.: Cable-driven parallel robot workspace identification and optimal design based on the upper limb functional rehabilitation. J. Bionic Eng. 19(2), 390–402 (2022)

    Article  Google Scholar 

  14. Ennaiem, F., et al.: A hybrid cable-driven parallel robot as a solution to the limited rotational workspace issue. Robotica 41, 850–868 (2022)

    Article  Google Scholar 

  15. Cavalcanti Santos, J., Gouttefarde, M.: A Real-Time Capable Forward Kinematics Algorithm for Cable-Driven Parallel Robots Considering Pulley Kinematics. In: Lenarčič, J., Siciliano, B. (eds.) ARK 2020. SPAR, vol. 15, pp. 199–208. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-50975-0_25

    Chapter  Google Scholar 

  16. Ennaiem, F., et al.: Cable-driven parallel robot accuracy improving using visual servoing. In: Müller, A., Brandstötter, M. (eds.) Advances in Service and Industrial Robotics: RAAD 2022, pp. 97–105. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-04870-8_12

    Chapter  Google Scholar 

  17. Ennaiem, F., et al.: Task-based design approach: development of a planar cable-driven parallel robot for upper limb rehabilitation. Appl. Sci. 11(12), 5635 (2021)

    Article  Google Scholar 

  18. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)

    Google Scholar 

  19. Kim, T.K.: Understanding one-way ANOVA using conceptual figures. Korean J. Anesthesiol. 70(1), 22 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdaws Ennaiem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ennaiem, F., Sandoval, J., Laribi, M.A. (2023). Development Methodology of Cable-Driven Parallel Robots Intended for Functional Rehabilitation. In: Caro, S., Pott, A., Bruckmann, T. (eds) Cable-Driven Parallel Robots. CableCon 2023. Mechanisms and Machine Science, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-031-32322-5_24

Download citation

Publish with us

Policies and ethics