Skip to main content

The Wishart Distribution on Symmetric Cones

  • Conference paper
  • First Online:
Non-commutative and Non-associative Algebra and Analysis Structures (SPAS 2019)

Abstract

In  this paper we discuss the extension of the Wishart probability distributions in higher dimension based on the boundary points of the symmetric cones in Jordan algebras. The symmetric cones form a basis for the construction of the degenerate and non-degenerate Wishart distributions in the field of \({{\,\textrm{Herm}\,}}(m,\mathbb {C})\), \({{\,\textrm{Herm}\,}}(m,\mathbb {H})\), \({{\,\textrm{Herm}\,}}(3,\mathbb {O})\) that denotes respectively the Jordan algebra of all Hermitian matrices of size \(m\times m\) with complex entries, the skew field \(\mathbb {H}\) of quaternions, and the algebra \(\mathbb {O}\) of octonions. This density is characterised by the Vandermonde determinant structure and the exponential weight that is dependent on the trace of the given matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, 3rd edn. Wiley Series in Probability and Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ (2003)

    Google Scholar 

  2. Andersson, S.: Invariant normal models. Ann. Statist. 3, 132–154 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andersson, S.A., Brøns, H.K., Jensen, S.T.: Distribution of eigenvalues in multivariate statistical analysis. Ann. Statist. 11(2), 392–415 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arazy, J., Upmeier, H.: Boundary measures for symmetric domains and integral formulas for the discrete Wallach points. Integral Equ. Oper. Theory. 47(4), 375–434 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Edelman, A.: The distribution and moments of the smallest eigenvalue of a random matrix of Wishart type. Linear Algebra Appl. 159, 55–80 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Edelman, A., Rao, N.R.: Random matrix theory. Acta Numer. 14, 233–297 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1994). Oxford Science Publications

    Google Scholar 

  8. Forrester, P.J.: Octonions in random matrix theory. Proc. A. 473(2200), 20160800, 11 (2017)

    Google Scholar 

  9. Forrester, P.J., Warnaar, S.O.: The importance of the Selberg integral. Bull. Amer. Math. Soc. (N.S.) 45(4), 489–534 (2008)

    Google Scholar 

  10. Gindikin, S.G.: Invariant generalized functions in homogeneous domains. Funkcional. Anal. i Priložen. 9(1), 56–58 (1975)

    MathSciNet  MATH  Google Scholar 

  11. Goodman, N.R.: Statistical analysis based on a certain multivariate complex Gaussian distribution (An introduction). Ann. Math. Statist. 34, 152–177 (1963)

    Google Scholar 

  12. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Pure Appl. Math. vol. 80. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London (1978)

    Google Scholar 

  13. Helwig, K.H.: Jordan-Algebren und symmetrische Räume. I. Math. Z. 115, 315–349 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. James, A.T.: Distributions of matrix variates and latent roots derived from normal samples. Ann. Math. Statist. 35, 475–501 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Johnstone, I.M.: On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29(2), 295–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jordan, P., von Neumann, J., Wigner, E.: On an algebraic generalization of the quantum mechanical formalism. Ann. of Math. (2) 35(1), 29–64 (1934)

    Google Scholar 

  17. Khatri, C.G.: Classical statistical analysis based on a certain multivariate complex Gaussian distribution. Ann. Math. Statist. 36, 98–114 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. König, W.: Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2, 385–447 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lassalle, M.: Algèbre de Jordan et ensemble de Wallach. Invent. Math. 89(2), 375–393 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses, 3rd edn. Springer Texts in Statistics. Springer, New York (2005)

    MATH  Google Scholar 

  21. Loos, O.: Symmetric Spaces: Compact Spaces and Classification, vol. 2. W.A. Benjamin Inc, New York-Amsterdam (1969)

    Google Scholar 

  22. Massam, H., Neher, E.: On transformations and determinants of Wishart variables on symmetric cones. J. Theoret. Probab. 10(4), 867–902 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mehta, M.L.: Random Matrices, vol. 142, 3rd edn. Pure Appl. Math. Elsevier/Academic Press, Amsterdam (2004)

    Google Scholar 

  24. Muhumuza, A.K., Malyarenko, A., Lundengård, K., Silvestrov, S., Mango, J.M., Kakuba, G.: Extreme points of the Vandermonde determinant and Wishart ensemble on symmetric cones. In: Malyarenko, A., Ni, Y., Rančić, M., Silvestrov, S. (eds.) Stochastic Processes, Statistical Methods, and Engineering Mathematics. SPAS 2019. Springer Proceedings in Mathematics and Statistics, vol. 408, Ch. 27, pp. 625–649. Springer, Cham (2023)

    Google Scholar 

  25. Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York (1982)

    Google Scholar 

  26. Nadakuditi, R.R., Edelman, A.: Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples. IEEE Trans. Signal Process. 56(7, part 1), 2625–2638 (2008)

    Google Scholar 

  27. Rao, N.R., Mingo, J.A., Speicher, R., Edelman, A.: Statistical eigen-inference from large Wishart matrices. Ann. Statist. 36(6), 2850–2885 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ratnaradzha, T., Val’yankur, R., Alvo, M.: Complex random matrices and the capacity of a Rician channel. Problemy Peredachi Informatsii 41(1), 3–27 (2005)

    MathSciNet  Google Scholar 

  29. Selberg, A.: Bemerkninger om et multipelt integral. Norsk Mat. Tidsskr. 26, 71–78 (1944)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The financial support for this research by the Swedish International Development Agency, (Sida), Grant No.316, International Science Program, (ISP) in Mathematical Sciences, (IPMS) is gratefully acknowledged. Asaph Muhumuza is also grateful to the research environment Mathematics and Applied Mathematics (MAM), Division of Mathematics and Physics, School of Education, Culture and Communication, Mälardalen University for providing an excellent and inspiring environment for research education and research. Sergei Silvestrov is grateful to the Royal Swedish Academy of Sciences for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Silvestrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muhumuza, A.K., Lundengård, K., Malyarenko, A., Silvestrov, S., Mango, J.M., Kakuba, G. (2023). The Wishart Distribution on Symmetric Cones. In: Silvestrov, S., Malyarenko, A. (eds) Non-commutative and Non-associative Algebra and Analysis Structures. SPAS 2019. Springer Proceedings in Mathematics & Statistics, vol 426. Springer, Cham. https://doi.org/10.1007/978-3-031-32009-5_23

Download citation

Publish with us

Policies and ethics