Skip to main content

On Modelling Electrical Conductivity of the Cerebral White Matter

  • Conference paper
  • First Online:
GeNeDis 2022 (GeNeDis 2022)

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1424))

Abstract

The conductivity, in general, of the brain tissues is a characteristic key of functional cerebral changes. White matter electric conductivity appears to be extremely anisotropic, so a tensor (matrix) is needed to describe it. Traditional methods of imaging brain electrical properties fail to capture it and required the interpolation of the diffusion matrix. The electrochemical model is suitable for analysis, while, on the other hand, the volume fraction model is suitable for studying the effect of white matter structural changes in relation to electrical conductivity. It adopts a relevant algorithm, based upon a linear conductivity-to-diffusivity relationship and a volume constraint, respectively. It incorporates the effects of the partial volume of the cerebrospinal fluid and the structure of the neuronal fiber crossing, which was not achieved by the existing algorithms, accomplishing a more accurate estimation of the anisotropic conductivity of the white matter. Diffusion matrix imaging is a powerful noninvasive method for characterizing neuronal tissue in the human brain. The ultimate goal is to study and draw appropriate conclusions, regarding the molecule diffusion in the brain under normal physiological conditions and the changes that occur in development, diseases, and aging. The ability to measure the electrical conductivity of brain tissues in a noninvasive way also helps in characterizing endogenous currents by measuring the associated electromagnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arkhtari M, Byrant HC, Mamelak AN, Flynn ER (2002) Conductivities of three-layer live human skull. Brain Topogr 14(3):151–167.

    Google Scholar 

  2. Åström M, Lemaire J.J, Wårdell K (2012) Influence of heterogeneous and anisotropic tissue conductivity on electric field distribution in deep brain stimulation. Med Biol Eng Comput 50(1):23–32.

    Google Scholar 

  3. Baratti, C., A. Barnett, and C. Pierpaoli. 1997. Comparative MRI study of brain maturation using T1, T2 and the diffusion tensor. Presented at 5th ISMRM. Vancouver, British Columbia, Canada.

    Google Scholar 

  4. Basser, P. J., J. Mattiello, and D. Le Bihan. 1994. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66:259–267.

    Google Scholar 

  5. Basser, P. J., Mattiello, J. M. & Le Bihan, D. (1994) Biophys. J. 66, 259–267.

    Google Scholar 

  6. Basser, P. J., S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi. 2000. In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44:625–632.

    Google Scholar 

  7. Beaulieu, C. 2002. The basis of anisotropic water diffusion in the nervous system: a technical review. NMR Biomed. 15:435–455.

    Article  PubMed  Google Scholar 

  8. D. S. Tuch, V. J. Wedeen, A. M. Dale, J. S. George, and J. W. Belliveau, “Conductivity mapping of the human brain using diffusion tensor MRI,” Proc. Nat. Acad. Sci. USA, vol. 98, pp. 11697–11701, Sep. 2001.

    Google Scholar 

  9. D. S. Tuch, V. J. Wedeen, A. M. Dale, J. S. George, and J. W. Belliveau, “Conductivity mapping of biological tissue using diffusion MRI,” Ann. N. Y. Acad. Sci., vol. 888, pp. 314–316, Oct. 1999.

    Google Scholar 

  10. Ford, J. C., and D. B. Hackney. 1997. Numerical model for calculation of apparent diffusion coefficients (ADC) in permeable cylinders–comparison with measured ADC in spinal cord white matter. Magn. Reson. Med. 37:387–394.

    Article  CAS  PubMed  Google Scholar 

  11. Ford, J. C., D. B. Hackney, E. Lavi, M. Phillips, and U. Patel. 1998. Dependence of apparent diffusion coefficients on axonal spacing, membrane permeability, and diffusion time in spinal cord white matter. J. Magn. Reson. Imag. 8:775–782.

    Google Scholar 

  12. Geddes LA, Baker LE (1967) The specific resistance of biological material – a compendium of data for the biomedical engineer and physiologist. Med Biol Eng Comput 5(3):271–293.

    Article  CAS  Google Scholar 

  13. Güllmar D, Haueisen J, Reichenbach JR (2010) Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study. NeuroImage 51(1):145–163.

    Article  PubMed  Google Scholar 

  14. Hoekema R, Wieneke GH, Leijten FSS, van Veelen CWM, van Rijen PC, Huiskamp GJM, Ansems J, van Huffelen AC (2003) Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain Topogr 16(1):29–38.

    Google Scholar 

  15. Kun Wang, Shanan Zhu, Mueller, B. A., Lim, K. O., Zhongming Liu, & Bin He. (2008). A New Method to Derive White Matter Conductivity From Diffusion Tensor MRI. IEEE Transactions on Biomedical Engineering, 55(10), 2481–2486. https://doi.org/10.1109/tbme.2008.923159.

  16. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546.

    Article  PubMed  Google Scholar 

  17. Le Bihan, D. 1995. Diffusion and Perfusion Magnetic Resonance Imaging: Application to Functional MRI. D. Le Bihan, editor. Raven Press, New York, NY.

    Google Scholar 

  18. Le Bihan, D. 2003. Looking into the functional architecture of the brain with diffusion MRI. Nat. Rev. Neurosci. 4:469–480.

    Google Scholar 

  19. Lee J, Song Y, Choi N, Cho S, Seo JK, Kim DH (2013) Non-invasive measurement of conductivity anisotropy at Larmor frequency using MRI. Comput Math Method M. https://doi.org/10.1155/2013/421619.

  20. Lee WH, Liu Z, Mueller BA, Lim K, He B (2009) Influence of white matter anisotropic conductivity on EEG source localization: comparison to fMRI in human primary visual cortex. ClinNeurophysiol 120(12):2071–2081.

    Google Scholar 

  21. Liu Y, Zhu SA, He B (2009) Induced current magnetic resonance electrical impedance tomography of brain tissues based on the J-substitution algorithm: a simulation study. Phys Med Biol 54(14): 4561–4573.

    Article  PubMed  PubMed Central  Google Scholar 

  22. M. Sekino, K. Yamaguchi, N. Iriguchi, and S. Ueno, “Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging,” J. Appl. Phys., vol. 93, pp. 6730–6732, May 2003.

    Google Scholar 

  23. Mamata H, De Girolami U, Hoge WS, Jolesz FA, Maier SE (2006) Collateral nerve fibers in human spinal cord: visualization with magnetic resonance diffusion tensor imaging. NeuroImage 31(1):24–30.

    Article  PubMed  Google Scholar 

  24. Mori S, Barker PB (1999) Diffusion magnetic resonance imaging: its principle and applications. Anat Rec 257:102–109.

    Article  CAS  PubMed  Google Scholar 

  25. Neil, J. J., J. Miller, P. Mukherjee, and P. S. Huppi. 2002. Diffusion tensor imaging of normal and injured developing human brain: a technical review. NMR Biomed. 15:543–552.

    Google Scholar 

  26. Neil, J. J., S. I. Shiran, R. C. McKinstry, G. L. Schefft, A. Z. Snyder, C. R. Almli, E. Akbudak, J. A. Aronovitz, J. P. Miller, B. C. Lee, and T. E. Conturo. 1998. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology. 209:57–66.

    Google Scholar 

  27. Nicholson, P. W. (1965) Exp. Neurol. 13, 386–401.

    Google Scholar 

  28. Odabaee M, Tokariev A, Layeghy S, Mesbah M, Colditz PB, Ramon G, Vanhatalo S (2014) Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models. NeuroImage 96:73–80.

    Google Scholar 

  29. Pierpaoli, C. & Basser, P. J. (1996) Magn. Reson. Med. 36, 893–906.

    Article  CAS  PubMed  Google Scholar 

  30. Rushton, W. A. H. 1951. A theory of the effects of fibre size in medullated nerve. J. Physiol. (Lond.). 115:101–122.

    Google Scholar 

  31. Sekino M, Inoue Y, Ueno S (2004) Magnetic resonance imaging of mean values and anisotropy of electrical conductivity in the human brain. Neurology and Clin Neurophysiol 55:1–5.

    Google Scholar 

  32. Sekino M, Yamaguchi K, Iriguchi N, Ueno S (2003) Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging. J Appl Phys 93(10):6730–6732.

    Google Scholar 

  33. Sen AK, Torquato S (1989) Effective conductivity of anisotropic two-phase composite media. Phys Rev B 39(7):4504–4515.

    Google Scholar 

  34. Sen, A. K. & Torquato, S. (1989) Phys. Rev. B 39, 4504–4515.

    Google Scholar 

  35. Sen, P. N., & Basser, P. J. (2005). A Model for Diffusion in White Matter in the Brain. Biophysical Journal, 89(5), 2927–2938. https://doi.org/10.1529/biophysj.105.063016.

  36. Stanisz GJ (2003) Diffusion MR in biological systems: tissue compartments and exchange. Israel J Chem 43(1):33–44.

    Google Scholar 

  37. Torquato S, Sen AK (1990) Conductivity tensor of anisotropic composite media from the microstructure. J Appl Phys 67(3): 1145–1155.

    Google Scholar 

  38. Tuch DS, Reese TG, Wiegell MR, Wedeen VJ (2003) Diffusion MRI of complex neural architecture. Neuron 40:885–895.

    Google Scholar 

  39. Tuch DS, Wedeen VJ, Dale AM, George JS, Belliveau JW. Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11697–11701. https://doi.org/10.1073/pnas.171473898. PMID: 11573005; PMCID: PMC58792.

  40. Tuch, D. S., Wedeen, V. J., Dale, A. M., George, J. S. & Belliveau, J. W. (1999) Ann. N.Y. Acad. Sci. 888, 314–316.

    Google Scholar 

  41. Voronel A, Veliyulin E, Machavariani VS, Kisliuk A, Quitmann D (1998) Fractional Stokes-Einstein law for ionic transport in liquids. Phys Rev Lett 80(12):2630–2633.

    Google Scholar 

  42. Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS (2006) Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modelling. NeuroImage 30(3):813–826.

    Google Scholar 

  43. Wu ZX, Zhu SA, He B (2009) A new method of computing the conductivity tensor of brain tissue based on water diffusion tensor. Chin J Biomed Eng 28(4):521–525.

    Google Scholar 

  44. Wu, Z., Liu, Y., Hong, M., & Yu, X. (2018). A review of anisotropic conductivity models of brain white matter based on diffusion tensor imaging. Medical & Biological Engineering & Computing, 56(8), 1325–1332. https://doi.org/10.1007/s11517-018-1845-9.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Perakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perakis, E. (2023). On Modelling Electrical Conductivity of the Cerebral White Matter. In: Vlamos, P. (eds) GeNeDis 2022. GeNeDis 2022. Advances in Experimental Medicine and Biology, vol 1424. Springer, Cham. https://doi.org/10.1007/978-3-031-31982-2_9

Download citation

Publish with us

Policies and ethics