Skip to main content

Compressive Learning of Deep Regularization for Denoising

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14009))

Abstract

Solving ill-posed inverse problems can be done accurately if a regularizer well adapted to the nature of the data is available. Such regularizer can be systematically linked with the distribution of the data itself through the maximum a posteriori Bayesian framework. Recently, regularizers designed with the help of deep neural networks (DNN) received impressive success. Such regularizers are typically learned from large datasets. To reduce the computational burden of this task, we propose to adapt the compressive learning framework to the learning of regularizers parametrized by DNN. Our work shows the feasibility of batchless learning of regularizers from a compressed dataset. In order to achieve this, we propose an approximation of the compression operator that can be calculated explicitly for the task of learning a regularizer by DNN. We show that the proposed regularizer is capable of modeling complex regularity prior and can be used for denoising.

This work was partly funded by ANR project EFFIREG - ANR-20-CE40-0001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chatalic, A., Carratino, L., De Vito, E., Rosasco, L.: Mean Nyström embeddings for adaptive compressive learning. In: International Conference on Artificial Intelligence and Statistics, pp. 9869–9889. PMLR (2022)

    Google Scholar 

  2. Demoment, G.: Image reconstruction and restoration: overview of common estimation structures and problems. IEEE Trans. Acoust. Speech Signal Process. 37(12), 2024–2036 (1989)

    Article  Google Scholar 

  3. Engel, J., et al.: Neural audio synthesis of musical notes with wavenet autoencoders. In: International Conference on Machine Learning, pp. 1068–1077. PMLR (2017)

    Google Scholar 

  4. Gribonval, R., Blanchard, G., Keriven, N., Traonmilin, Y.: Compressive statistical learning with random feature moments. Math. Stat. Learn. 3(2), 113–164 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gribonval, R., Blanchard, G., Keriven, N., Traonmilin, Y.: Statistical learning guarantees for compressive clustering and compressive mixture modeling. Math. Stat. Learn. 3(2), 165–257 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gribonval, R., Chatalic, A., Keriven, N., Schellekens, V., Jacques, L., Schniter, P.: Sketching datasets for large-scale learning (long version). arXiv preprint arXiv:2008.01839 (2020)

  7. Gribonval, R., Chatalic, A., Keriven, N., Schellekens, V., Jacques, L., Schniter, P.: Sketching data sets for large-scale learning: keeping only what you need. IEEE Signal Process. Mag. 38(5), 12–36 (2021)

    Article  Google Scholar 

  8. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  MATH  Google Scholar 

  9. Hurault, S., Leclaire, A., Papadakis, N.: Gradient step denoiser for convergent plug-and-play. arXiv preprint arXiv:2110.03220 (2021)

  10. Keriven, N., Bourrier, A., Gribonval, R., Pérez, P.: Sketching for large-scale learning of mixture models. Inf. Inference 7(3), 447–508 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kobler, E., Effland, A., Kunisch, K., Pock, T.: Total deep variation: a stable regularization method for inverse problems. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 9163–9180 (2021)

    Article  Google Scholar 

  12. Lunz, S., Öktem, O., Schönlieb, C.B.: Adversarial regularizers in inverse problems. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  13. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: International Conference on Machine Learning (2010)

    Google Scholar 

  14. Pan, X., Srikumar, V.: Expressiveness of rectifier networks. In: International Conference on Machine Learning, pp. 2427–2435. PMLR (2016)

    Google Scholar 

  15. Prost, J., Houdard, A., Almansa, A., Papadakis, N.: Learning local regularization for variational image restoration. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds.) SSVM 2021. LNCS, vol. 12679, pp. 358–370. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75549-2_29

    Chapter  Google Scholar 

  16. Schellekens, V.: Pycle: a python compressive learning toolbox (2020). https://doi.org/10.5281/zenodo.3855114

  17. Schellekens, V., Jacques, L.: Compressive classification (machine learning without learning). arXiv preprint arXiv:1812.01410 (2018)

  18. Schellekens, V., Jacques, L.: Compressive learning of generative networks. arXiv preprint arXiv:2002.05095 (2020)

  19. Shi, H.: https://github.com/shihui1224/sketching-deep-regu-for-denoising

  20. Shi, H., Traonmilin, Y., Aujol, J.F.: Compressive learning for patch-based image denoising. SIAM J. Imag. Sci. 15(3), 1184–1212 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Venkatakrishnan, S.V., Bouman, C.A., Wohlberg, B.: Plug-and-play priors for model based reconstruction. In: IEEE Global Conference on Signal and Information Processing, pp. 945–948. IEEE (2013)

    Google Scholar 

  22. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: International Conference on Computer Vision, pp. 479–486. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, H., Traonmilin, Y., Aujol, JF. (2023). Compressive Learning of Deep Regularization for Denoising. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics