Skip to main content

Higher-Order and Stable Numerical Scheme for Nonlinear Diffusion System via Compact Finite Difference and Adaptive Step-Size Runge-Kutta Methods

  • Conference paper
  • First Online:
4th International Conference on Artificial Intelligence and Applied Mathematics in Engineering (ICAIAME 2022)

Abstract

In this study, an efficient numerical method is proposed for the numerical solution of a class of two-dimensional initial-boundary value problems governed by a non-linear system of partial differential equations known as a Brusselator system. The method proposed is based on a combination of higher-order Compact Finite Difference (CFD) scheme and stable time integration scheme which is known as adaptive step-size Runge-Kutta method. The performance of adaptive step-size Runge-Kutta (RK) formula of third-order accurate in time and Compact Finite Difference scheme of sixth-order in space are investigated. The proposed method has been compared with the studies in the literature. Several test problems are considered to check the accuracy and efficiency of the method and reveal that the method is an efficient and reliable alternative to approximate the Brusselator system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mittal, R.C., Kumar, S., Jiwari, R.: A cubic B-spline quasi-interpolation algorithm to capture the pattern formation of coupled reaction-diffusion models. Eng. Comput. 38, 1375–1391 (2021). https://doi.org/10.1007/s00366-020-01278-3

    Article  Google Scholar 

  2. Prigogine, I., Lefever, R.S.: Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48(4), 1695–1700 (1968)

    Article  Google Scholar 

  3. Prigogine, I., Nicolis, G.: Self-organisation in nonequilibrium systems. In: Dissipative Structures to Order through Fluctuations, pp. 339–426 (1977)

    Google Scholar 

  4. Lefever, R.S., Nicolis, G.: Chemical instabilities and sustained oscillations. J. Theor. Biol. 30(4), 267–284 (1971)

    Article  MATH  Google Scholar 

  5. Al-Islam, S., Ali, A., Al-Haq, S.: A computational modeling of the behavior of the two-dimensional reaction-diffusion Brusselator system. Appl. Math. Model. 34(12), 3896–3909 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kumar, S., Jiwari, R., Mittal, R.C.: Numerical simulation for computational modelling of reaction-diffusion Brusselator model arising in chemical processes. J. Math. Chem. 57, 149–179 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alqahtani, A.M.: Numerical simulation to study the pattern formation of reaction-diffusion Brusselator model arising in triple collision and enzymatic. J. Math. Chem. 56(6), 1543–1566 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jiwari, R., Yuan, J.: A computational modeling of two dimensional reaction-diffusion Brusselator system arising in chemical processes. J. Math. Chem. 52(6), 1535–1551 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mittal, R.C., Rohila, R.: Numerical simulation of reaction-diffusion systems by modified cubic B-spline differential quadrature method. Chaos, Solitons Fractals 92, 9–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Onarcan, A.T., Adar, N., Dag, I.: Trigonometric cubic B-spline collocation algorithm for numerical solutions of reaction-diffusion equation systems. J. Math. Chem. 37(5), 6848–6869 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Haq, S., Ali, I., Nisar, K.S.: A computational study of two-dimensional reaction-diffusion Brusselator system with applications in chemical processes. Alex. Eng. J. 60(5), 4381–4392 (2021)

    Article  Google Scholar 

  12. Mittal, R.C., Jiwari, R.: Numerical solution of two-dimensional reaction-diffusion Brusselator system. Appl. Math. Comput. 217, 5404–5415 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Saad, K.M.: Fractal-fractional Brusselator chemical reaction. Chaos, Solitons Fractals 150(12), 111087 (2011)

    MathSciNet  Google Scholar 

  14. Jena, R.M., Chakraverty, S., Rezazadeh, H., Domiri, G.D.: On the solution of time-fractional dynamical model of Brusselator reaction-diffusion system arising in chemical reactions. Math. Methods Appl. Sci. 43(7), 3903–3913 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Hoffmann, K.A., Chiang, S.T.: Computational Fluid Dynamics, vol. 3, 4th edn, pp. 117–137. A Publication of Engineering System™ (2000)

    Google Scholar 

  16. Press, W.H., Teukolsky, S.A.: Adaptive Stepsize Runge-Kutta integration. Comput. Phys. 6, 188 (1992). https://doi.org/10.1063/1.4823060

    Article  Google Scholar 

  17. Lu, Y.Y.: Numerical Methods for Differential Equations, Department of Mathematics City University of Hong Kong Kowloon, Hong Kong, pp. 13–16

    Google Scholar 

  18. Lele, S.K.: Compact finite difference schemes with spectral-like solution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cicek, Y., Gucuyenen, K.N., Bahar, E., Gurarslan, G., Tanoğlu, G.: A new numerical algorithm based on Quintic B-Spline and adaptive time integrator for coupled Burger’s equation. Comput. Methods Differ. Equ. 11, 130–142 (2022)

    MathSciNet  MATH  Google Scholar 

  20. İmamoğlu, K.N., Korkut, S.Ö., Gurarslan, G., Tanoğlu, G.: A reliable and fast mesh-free solver for the telegraph equation. Comput. Appl. Math. 41(5), 1–24 (2022)

    MathSciNet  MATH  Google Scholar 

  21. Bahar, E., Gurarslan, G.: B-spline method of lines for simulation of contaminant transport in groundwater. Water 12(6), 1607 (2020)

    Article  Google Scholar 

  22. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1) (1980)

    Google Scholar 

  23. Dormand, J.R., Prince, P.J.: High order embedded Runge-Kutta formulae, Department of Mathematics and Statistics, Teesside Polytechnic, Middlesbrough, Cleveland, TS1 3BA, U.K

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shodijon Ismoilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ismoilov, S., Gurarslan, G., Tanoğlu, G. (2023). Higher-Order and Stable Numerical Scheme for Nonlinear Diffusion System via Compact Finite Difference and Adaptive Step-Size Runge-Kutta Methods. In: Hemanth, D.J., Yigit, T., Kose, U., Guvenc, U. (eds) 4th International Conference on Artificial Intelligence and Applied Mathematics in Engineering. ICAIAME 2022. Engineering Cyber-Physical Systems and Critical Infrastructures, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-031-31956-3_3

Download citation

Publish with us

Policies and ethics