Skip to main content

Synthetic Signal Generation Using Time Series Clustering and Conditional Generative Adversarial Network

  • Conference paper
  • First Online:
4th International Conference on Artificial Intelligence and Applied Mathematics in Engineering (ICAIAME 2022)

Abstract

In recent years, artificial data became inevitable need for almost any of the deep learning applications. Most of the published works on data generation uses deep networks for signal generation without preprocessing and adequate characterization. Therefore, not properly summarizing data leads to dramatic loss of key aspects of the signal. In this study, we propose a generic way for creating signal that includes important features of the authentic data. Our approach involves time series clustering and Generative Adversarial Networks for grouping and simulating signals. Even with the very small amount of data, the model can effectively split data set into meaningful clusters and generates signals that have high monotonic associations to corresponding cluster. We finally report on experimental results of different time series clustering techniques used for preprocessing and the outcomes of different approaches are compared statistically for both synthetic and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Priemer, R.: Introductory signal processing. In: Advanced Series in Electrical and Computer Engineering. World Scientific Publishing Company (1990). https://books.google.com.tr/books?id=5AM8DQAAQBAJ

  2. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017). https://doi.org/10.1016/j.neucom.2016.12.038

    Article  Google Scholar 

  3. Nikolenko, S.I.: Introduction: the data problem. In: Synthetic Data for Deep Learning. SOIA, vol. 174, pp. 1–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75178-4_1

    Chapter  Google Scholar 

  4. Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation with recurrent conditional GANs (2017). https://doi.org/10.48550/ARXIV.1706.02633

  5. Smith, K.E., Smith, A.O.: Conditional GAN for timeseries generation (2020). https://doi.org/10.48550/ARXIV.2006.16477

  6. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27

    Google Scholar 

  7. Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014). https://doi.org/10.48550/ARXIV.1411.1784

  8. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017). https://doi.org/10.48550/ARXIV.1701.07875

  9. Theis, L., Oord, A.V.D., Bethge, M.: A note on the evaluation of generative models (2015). https://doi.org/10.48550/ARXIV.1511.01844

  10. Harada, S., Hayashi, H., Uchida, S.: Biosignal generation and latent variable analysis with recurrent generative adversarial networks (2019). https://doi.org/10.48550/ARXIV.1905.07136

  11. Brophy, E., Wang, Z., Ward, T.E.: Quick and easy time series generation with established image-based GANs (2019). https://doi.org/10.48550/ARXIV.1902.05624

  12. Warren Liao, T.: Clustering of time series data-a survey. Pattern Recognit. 38(11), 1857–1874 (2005). https://doi.org/10.1016/j.patcog.2005.01.025

    Article  MATH  Google Scholar 

  13. Kavitha, V., Punithavalli, M.: Clustering time series data stream - a literature survey (2010). https://doi.org/10.48550/ARXIV.1005.4270

  14. Toft, P., et al.: On clustering of fMRI time series. NeuroImage 5

    Google Scholar 

  15. Goutte, C., Hansen, L., Liptrot, M., Rostrup, E.: Feature-space clustering for fMRI meta-analysis. Hum. Brain Mapp. 13, 165–83 (2001). https://doi.org/10.1002/hbm.1031

    Article  Google Scholar 

  16. Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognit. 44(3), 678–693 (2011). https://doi.org/10.1016/j.patcog.2010.09.013

    Article  MATH  Google Scholar 

  17. Cuturi, M., Blondel, M.: Soft-DTW: a differentiable loss function for time-series (2017). https://doi.org/10.48550/ARXIV.1703.01541

  18. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop, vol. 10, No. 16, pp. 359–370 (1994)

    Google Scholar 

  19. Li, D., Zhang, J., Zhang, Q., Wei, X.: Classification of ECG signals based on 1D convolution neural network. In: 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–6. IEEE (2017). https://doi.org/10.1109/HealthCom.2017.8210784

  20. Goodfellow, I., Bengio, Y., Courville, A.: Sigmoid Units for Bernouilli Output Distributions. The MIT Press, Cambridge (2017)

    Google Scholar 

  21. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML, pp. 807–814 (2010). https://icml.cc/Conferences/2010/papers/432.pdf

  22. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network (2015). https://doi.org/10.48550/ARXIV.1505.00853

  23. Schober, P., Boer, C., Schwarte, L.: Correlation coefficients: appropriate use and interpretation. Anesth. Analg. 126, 1 (2018). https://doi.org/10.1213/ANE.0000000000002864

    Article  Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurullah Ozturk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ozturk, N., Günay, M. (2023). Synthetic Signal Generation Using Time Series Clustering and Conditional Generative Adversarial Network. In: Hemanth, D.J., Yigit, T., Kose, U., Guvenc, U. (eds) 4th International Conference on Artificial Intelligence and Applied Mathematics in Engineering. ICAIAME 2022. Engineering Cyber-Physical Systems and Critical Infrastructures, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-031-31956-3_21

Download citation

Publish with us

Policies and ethics