Skip to main content

High-Performance Aluminum Castings Containing Rare Earth Elements

  • Chapter
  • First Online:
Rare Earth Metals and Minerals Industries
  • 263 Accesses

Abstract

Cerium(IV) oxide (CeO2) is one of the predominate oxides produced in rare earth mining. Much of it is discarded after separation from the higher atomic number rare earth oxides. A beneficial use of cerium (Ce) is being sought to reduce the cost of producing the more desirable rare earth elements.

Aluminum (Al) alloys containing small amounts of Ce have been investigated to improve their grain refining, casting characteristics and mechanical properties. Cerium containing mischmetal has also been studied in some depth. These additions were usually made at levels of 1 wt% or less and appreciable material property improvement was not evident. Recent work has shown that additions between 4 wt% and the approximate eutectic composition of 10 wt% improve the high-temperature performance of Al alloys.

Corrosion performance of Al alloys can also be improved through the addition of Ce. Traditional Al alloying elements such as magnesium (Mg) and silicon (Si) can be used to control casting characteristics and thermal and physical properties.

The result of using Ce as an addition to Al alloys in multiple manufacturing methods such as additive manufacturing, extrusion and casting is explored in this chapter. Significant strengthening and improved mechanical property retention at elevated temperature has been demonstrated, and in some compositions, complete recovery of room temperature mechanical properties resulted after exposure to elevated temperatures as high as 500 °C for 1000 h.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Tanwir, A.H. Ansari, Review on aluminium and its alloys for automotive applications. Int. J. Adv. Technol. Eng. Sci 5, 278–294 (2017)

    Google Scholar 

  2. S. Sterlepper, M. Fischer, J. Claßen, V. Huth, S. Pischinger, Concepts for hydrogen internal combustion engines and their implications on the exhaust gas after-treatment system. Energies 14(23), 8166 (2021). https://doi.org/10.3390/en14238166

    Article  CAS  Google Scholar 

  3. Prepared under the direction of the ASM Handbook Committee; William H. Cubberly, Director of Reference Publications. Metals Handbook 9th, vol 13 (ASM International, 1987) p. 585

    Google Scholar 

  4. V. Zakharov, About alloying of Aluminum alloys with transition metals. Metal Sci. Heat Treat. 59(8), 1–5 (2017)

    Google Scholar 

  5. V. Zakharov, T.D. Rostova, Effect of scandium, transition metals, and admixtures on strengthening of Aluminum alloys due to decomposition of the solid solution. Metal Sci. Heat Treat. 49(9), 435–442 (2007)

    Article  CAS  Google Scholar 

  6. S. Priyaranjan, P.R. Vundavilli, A. Meher, M.M. Mahapatra, Recent Progress in Aluminum metal matrix composites: A review on processing, mechanical and Wear properties. J. Manuf. Process. 59, 131–152 (2020)

    Article  Google Scholar 

  7. Z.C. Sims, M.S. Kesler, H.B. Henderson, A. Castillo, T. Fishman, P. Singleton, S. McCall, O. Rios, How cerium and lanthanum as coproducts promote stable rare earth production and new alloys. J. Sustain. Metall. 8, 1225–1234 (2022). https://doi.org/10.1007/s40831-022-00562-4

    Article  Google Scholar 

  8. R.T. Nguyen, D.D. Imholte, JOM 68, 1948 (2016)

    Article  Google Scholar 

  9. L.F. Mondolfo, Metallography of Aluminum Alloys (Wiley, 1943)

    Google Scholar 

  10. L.F. Mondolfo, Aluminum Alloys: Structure and Properties (Butterworths & Co Ltd, 1976)

    Google Scholar 

  11. W.M. Griffith, R.E. Sanders, G.J. Hildeman, Elevated Temperature Aluminum Alloys for Aerospace Applications. High-Strength Powder Metallurgy Aluminum Alloys, Proceedings of a symposium sponsored by the Powder Metallurgy Committee of the Metallurgical Society of AIME, February 17–18, 1982

    Google Scholar 

  12. X. Shikun, Y. Rongxi, G. Zhi, X. Xiang, H. Chagen, G. Xiuyan, Effects of rare earth Ce on casting properties of Al-4.5Cu alloy. Adv. Mater. Res. 136, 1–4 (2010)

    Article  Google Scholar 

  13. X. Shikun, A. Yongping, G. Zhi, X. Xiang, Y. Rongxi, G. Zhi, G. Xiuyan, Effects of Ce addition on the mobility and hot tearing tendency of Al-4.5Cu alloy. Adv. Mater. Res. 146–147, 481–484 (2010)

    Google Scholar 

  14. N.A. Belov, Principles of optimizing the structure of creep-resisting casting Aluminum alloys using transition metals. J. Adv. Mater. 1(4), 321–329 (1994)

    Google Scholar 

  15. N.A. Belov, E.A. Naumova, D.G. Eskin, Casting alloys of the Al–Ce–Ni system: A microstructural approach to alloy design. Mater. Sci. Eng. A 271(1), 134–142 (1999)

    Article  Google Scholar 

  16. J. Gröbner, D. Mirkovic, R. Schmid-Fetzer, Thermodynamic aspects of the constitution, grain refining, and solidification enthalpies of Al-Ce-Si alloys. Metall. Mater. Trans. A 35A, 3349 (2004)

    Article  Google Scholar 

  17. F. Czerwinski, Cerium in Aluminum Alloys. J. Mater. Sci. 56(12). https://doi.org/10.1007/s10853-019-03892-z

  18. K. Gschneidner, F.W. Calderwood, The Al-Ce (Aluminum-Cerium) system. Bull. Alloy Phase Diagr. 9(6), 699–672 (1988)

    Google Scholar 

  19. Z. Sims, O. Rios, D. Weiss, P. Turchi, A. Perron, J. Lee, T. Li, J. Hammons, M. Bagger-Hansen, T. Willey, K. An, Y. Chen, A. King, S. McCall, High performance Aluminum-cerium alloys for high-temperature applications. Mater. Horiz. 4, 1070 (2017)

    Article  CAS  Google Scholar 

  20. D. Weiss, Improved high-temperature Aluminum alloys containing cerium. J. Mater. Eng. Perform. 28, 1903–1908 (2019)

    Article  CAS  Google Scholar 

  21. X. Sun, Y. Lei, R. Zhou, B. Zhang, Novel compounds of cerium binary alloys from high-throughput first-principles calculations. J. Appl. Phys. 123, 235102 (2018)

    Article  Google Scholar 

  22. Ø. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjölander, H. Ekström, Strengthening mechanisms in solid solution Aluminum alloys. Metall. Mater. Trans. A 37A, 1999–2006 (2006)

    Article  CAS  Google Scholar 

  23. D. Weiss, Developments in Aluminum-scandium ceramic and Aluminum-scandium cerium alloys, in Light Metals, ed. by C. Chesonis, (The Minerals, Metals & Materials Society, 2019)

    Google Scholar 

  24. C. Eputra, J. Rakhmonov, D. Weiss, J. Mogonye, Microstructure and mechanical properties of cast Al-Ce-Sc-Zr-(Er) alloys strengthened by Al11Ce3 micro-platelets and L12 Al3(Sc,Zr,Er) nano-precipitates. Acta Mater. 240, 118354 (2022)

    Article  Google Scholar 

  25. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, E.R. Pinatel, P.J. Uggowitzer, The effect of Main alloying elements on the physical properties of Al–Si foundry alloys. Mater. Sci. Eng. A 560, 481–491., ISSN 0921-5093 (2013). https://doi.org/10.1016/j.msea.2012.09.093

    Article  CAS  Google Scholar 

  26. N. Chawla, K.K. Chawla, Metal Matrix Composites (Springer Science+Business Media, Inc., Berlin, 2006), p. 272

    Book  Google Scholar 

  27. D. Weiss, Development and Casting of High Cerium Content Aluminum Alloys, Transactions of the American Foundry Society 17-013 (American Foundry Society, 2017)

    Google Scholar 

  28. D. Weiss, Thermal Treatment of Al-Mg-Ce Alloys, Transaction of the American Foundry Society 18-101 (American Foundry Society, 2018)

    Google Scholar 

  29. D.R. Manca, A. Churyumov, A.V. Pozdniakov, A. Prosviryakov, D. Ryabov, A. Krokhin, V.A. Korolev, D. Daubarayte, Microstructure and properties of novel heat resistant Al–Ce–cu alloy for additive manufacturing. Met. Mater. Int. 25, 633–640 (2019). https://doi.org/10.1007/s12540-018-00211-0

    Article  CAS  Google Scholar 

  30. H. Hyer, A. Mehta, K. Graydon, N. Kljestan, M. Knezevic, D. Weiss, B. McWilliams, K. Cho, Y.H. Sohn, Addit. Manuf. 52, 102657 (2022). Available online February 2, 2022. https://doi.org/10.1016/j.addma.2022.102657

    CAS  Google Scholar 

  31. M. Kesler, M. Neveau, W. Carter, H. Henderson, Z. Sims, D. Weiss, T. Li, S. McCall, M. Glicksman, O. Rios, Liquid direct reactive printing of structural Aluminum alloys, applied. Mater. Today 13, 339–343 (2018)

    Google Scholar 

  32. J.S. Luna, A.A. Flores, V.R. Muñiz, A.F. Fuentes, J. Torres, N. Rodríguez, J.C. Ortiz, P. Orozco, Cerium extraction by Metallothermic reduction using cerium oxide powder injection. J. Rare Earths 29(1), 74 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weiss, D. (2024). High-Performance Aluminum Castings Containing Rare Earth Elements. In: Murty, Y.V., Alvin, M.A., Lifton, J. (eds) Rare Earth Metals and Minerals Industries. Springer, Cham. https://doi.org/10.1007/978-3-031-31867-2_14

Download citation

Publish with us

Policies and ethics