Skip to main content

TESSLA: Two-Stage Ensemble Scar Segmentation for the Left Atrium

  • Conference paper
  • First Online:
Left Atrial and Scar Quantification and Segmentation (LAScarQS 2022)

Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide; however, the current success rates for catheter ablation (CA) therapy, the first-line treatment for AF, are suboptimal. Therefore, extensive research has focused on the relationship between scar tissue in the left atrium (LA) and AF, and its application for patient stratification and more effective CA therapy strategies. However, quantifying and segmenting LA scar tissue requires significant data pre-processing from well-trained clinicians. Hence, deep learning (DL) has been proposed to automatically segment the LA fibrotic scar from late gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) images. Segmenting LA scar with DL is challenging as fibrosis from LGE-CMR images has a relatively small volume and regions surrounding the scar are also enhanced. Therefore, we propose a two-stage ensemble DL model (TESSLA: two-stage ensemble scar segmentation for the LA) that segments the blood pool of the LA, estimates the LA wall, applies an image intensity ratio with Z-score normalisation and combines a scar segmentation from two independent networks. TESSLA outperformed its constituent models and achieved state-of-art accuracy on the LAScar 2022 challenge evaluation platform for LA scar segmentation with a Dice score of 0.63  ±  0.14 and a Dice score of 0.58  ±  0.11 for the final test phase. Our workflow provides a fully automatic estimation of LA fibrosis from clinical LGE CMR scans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hart, R.G., Halperin, J.L.: Atrial fibrillation and stroke: concepts and controversies. Stroke 32, 803–808 (2001)

    Article  Google Scholar 

  2. Chugh, S.S., et al.: Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 129, 837–847 (2014)

    Article  Google Scholar 

  3. Wolf, P.A., Abbott, R.D., Kannel, W.B.: Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 22, 983–988 (1991)

    Article  Google Scholar 

  4. Amin, A., Houmsse, A., Ishola, A., Tyler, J., Houmsse, M.: The current approach of atrial fibrillation management. Avicenna J. Med. 6, 8–16 (2016)

    Article  Google Scholar 

  5. Brundel, B.J.J.M., Ai, X., Hills, M.T., Kuipers, M.F., Lip, G.Y.H., de Groot, N.M.S.: Atrial fibrillation. Nat Rev Dis Primers. 8, 21 (2022). https://doi.org/10.1038/s41572-022-00347-9

    Article  Google Scholar 

  6. Karamichalakis, N., et al.: Managing atrial fibrillation in the very elderly patient: challenges and solutions. Vasc. Health Risk Manag. 11, 555–562 (2015)

    Google Scholar 

  7. Marrouche, N.F., et al.: Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA 311, 498–506 (2014)

    Article  Google Scholar 

  8. Marrouche, N.F., et al.: DECAAF II Investigators: Efficacy of LGE-MRI-guided fibrosis ablation versus conventional catheter ablation of atrial fibrillation: The DECAAF II trial: Study design. J. Cardiovasc. Electrophysiol. 32, 916–924 (2021)

    Article  Google Scholar 

  9. Li, L., Zimmer, V.A., Schnabel, J.A., Zhuang, X.: Medical image analysis on left atrial LGE MRI for atrial fibrillation studies: A review. Med. Image Anal. 77, 102360 (2022)

    Article  Google Scholar 

  10. Yang, G., et al.: A fully automatic deep learning method for atrial scarring segmentation from late gadolinium-enhanced MRI images. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 844–848 (2017)

    Google Scholar 

  11. Li, L., Zimmer, V.A., Schnabel, J.A., Zhuang, X.: AtrialJSQnet: A New framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information. Med. Image Anal. 76, 102303 (2022)

    Article  Google Scholar 

  12. Roy, A., Varela, M., Aslanidi, O.: Image-Based Computational Evaluation of the Effects of Atrial Wall Thickness and Fibrosis on Re-entrant Drivers for Atrial Fibrillation. Front. Physiol. 9, 1352 (2018)

    Article  Google Scholar 

  13. Roy, A., et al.: Identifying locations of re-entrant drivers from patient-specific distribution of fibrosis in the left atrium. PLoS Comput. Biol. 16, e1008086 (2020)

    Article  Google Scholar 

  14. Li, L., Zimmer, V.A., Schnabel, J.A., Zhuang, X.: AtrialGeneral: Domain Generalization for Left Atrial Segmentation of Multi-center LGE MRIs. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 557–566. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_54

    Chapter  Google Scholar 

  15. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods. 18, 203–211 (2021)

    Article  Google Scholar 

  16. Beinart, R., et al.: Left atrial wall thickness variability measured by CT scans in patients undergoing pulmonary vein isolation. J. Cardiovasc. Electrophysiol. 22, 1232–1236 (2011)

    Article  Google Scholar 

  17. Varela, M., et al.: Novel MRI Technique Enables Non-Invasive Measurement of Atrial Wall Thickness. IEEE Trans. Med. Imaging. 36, 1607–1614 (2017)

    Article  Google Scholar 

  18. Benito, E.M., et al.: Left atrial fibrosis quantification by late gadolinium-enhanced magnetic resonance: a new method to standardize the thresholds for reproducibility. Europace 19, 1272–1279 (2017)

    Article  Google Scholar 

  19. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49430-8_2

    Chapter  Google Scholar 

  20. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  21. Sabuncu, Z.: Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural Inf. Process. Syst., 31 (2018)

    Google Scholar 

  22. Paszke, A., et al: PyTorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d\textquotesingle Alché-Buc, F., Fox, E., and Garnett, R. (eds.) Adv. Neural Inf. Process. Syst. Curran Associates, Inc. 32, pp. 8026–8037 (2019)

    Google Scholar 

  23. Corral-Acero, J., et al.: Others: The Digital Twin to enable the vision of precision cardiology. Eur. Heart J. 41, 4556–4564 (2020)

    Article  Google Scholar 

  24. Muffoletto, M., et al.: Toward Patient-Specific Prediction of Ablation Strategies for Atrial Fibrillation Using Deep Learning. Front. Physiol. 12, 674106 (2021). https://doi.org/10.3389/fphys.2021.674106

    Article  Google Scholar 

  25. Roney, C.H., et al.: Predicting atrial fibrillation recurrence by combining population data and virtual cohorts of patient-specific Left atrial models. Circ. Arrhythm. Electrophysiol. 15, e010253 (2022)

    Article  Google Scholar 

  26. Muizniece, L., et al.: Reinforcement Learning to Improve Image-Guidance of Ablation Therapy for Atrial Fibrillation. Front. Physiol. 12, 733139 (2021). https://doi.org/10.3389/fphys.2021.733139

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Medical Research Council [MR/N013700/1], the British Heart Foundation [PG/15/8/31130], and the Wellcome/EPSRC Centre for Medical Engineering [WT 203148/Z/16/Z].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaheim Ogbomo-Harmitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ogbomo-Harmitt, S., Grzelak, J., Qureshi, A., King, A.P., Aslanidi, O. (2023). TESSLA: Two-Stage Ensemble Scar Segmentation for the Left Atrium. In: Zhuang, X., Li, L., Wang, S., Wu, F. (eds) Left Atrial and Scar Quantification and Segmentation. LAScarQS 2022. Lecture Notes in Computer Science, vol 13586. Springer, Cham. https://doi.org/10.1007/978-3-031-31778-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31778-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31777-4

  • Online ISBN: 978-3-031-31778-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics