Skip to main content

Physiology of Testicular Function

  • Chapter
  • First Online:
Andrology

Abstract

The male gonads, the testes, fulfill two essential functions. They are the site of spermatogenesis. The male gametes, the sperm, are produced here. As important is their second function as an endocrine gland that synthesizes androgens. Androgens are necessary for the formation of the typical male phenotype. The male gonad develops during the embryonic phase when the SRY gene is expressed in sex differentiation and a testosterone signal occurs.

Testicular tissue is divided into two main compartments: the seminiferous tubules, which are surrounded by peristaltically active peritubular cells, and house the germinal epithelium where the germ cells differentiate through meiosis into haploidization to finally form spermatozoa. The second compartment consists of the interstitium, containing the Leydig cells, which synthesize steroids and produce androgens. In immunological terms, the further differentiated germ cells are protected by the blood–testis barrier, which is formed by the Sertoli cells. The Sertoli cells also provide the niche of spermatogonial stem cells which are unipotent adult stem cells and drive spermatogenesis lifelong after puberty onset. The complex processes of germ cell maturation are regulated by numerous factors, including cytokines, transcriptional and growth factors, but especially by endocrine, paracrine, and autocrine signals.

The endocrine function is part of the hypothalamic-pituitary-gonadal axis. Numerous hormones and receptors act along this axis in a balanced feedback mechanism. Primarily, the system is driven by kisspeptin and pulsatile GnRH controlling the secretion of the pituitary gonadotropins LH and FSH, which in turn induce effects on the testes. LH stimulates the production of testosterone, whilst FSH acts on Sertoli cells and provokes an inhibin response. Testosterone, which is present in the testes in much higher concentrations than in the serum, and inhibin in turn regulate gonadotropin secretion in negative feedback, resulting in an endocrine control loop along the hypothalamic-pituitary-gonadal axis. FSH and androgen action are essential for quantitatively and qualitatively complete spermatogenesis.

Testosterone and its various metabolites, especially dihydrotestosterone and estradiol, are necessary for the normal male development of numerous target organs, including bone metabolism, muscles, hair and beard growth, vocal register, fat distribution, and certain brain functions.

Disorders of testicular function can have various causes, such as genetic or disease-related. Such disorders lead to prenatal disorders of sex differentiation and postnatally to further pathological consequences such as infertility or hypogonadism, which are associated with numerous specifically male diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht M, Frungieri MB, Gonzalez-Calvar S, Meineke V, Köhn FM, Mayerhofer A (2005) Evidence for a histaminergic system in the human testis. Fertil Steril 83:1060–1063

    CAS  PubMed  Google Scholar 

  • Albrecht M, Rämsch R, Köhn FM, Schwarzer JU, Mayerhofer A (2006) Isolation and cultivation of human peritubular cells: a novel model for investigation of fibrotic processes in the human testis and male infertility. J Clin Endocrinol Metab 81:1956–1960

    Google Scholar 

  • Amann RP (2008) The cycle of the seminiferous epithelium: a need to revisit? J Androl 29:469–487

    PubMed  Google Scholar 

  • Amory JK, Page ST, Anawalt BD, Coviello AD, Matsumoto AM, Bremner WJ (2007) Elevated end-of-treatment serum INSL3 is associated with failure to completely suppress spermatogenesis in men receiving male hormonal contraception. J Androl 28:548–554

    CAS  PubMed  Google Scholar 

  • Anand-Ivell RJK, Relan V, Balvers M, Coiffec-Dorval I, Fritsch M, Bathgate RAD, Ivell R (2006) Expression of the insulin-like peptide 3 (INSL3) hormone-receptor (LGR8) system in the testis. Biol Reprod 74:945–953

    CAS  PubMed  Google Scholar 

  • Aslam H, Rosiepen G, Krishnamurthy H, Arslan M, Clemen G, Nieschlag E, Weinbauer GF (1999) The cycle duration of the seminiferous epithelium remains unaltered during GnRH antagonist-induced testicular involution in rats and monkeys. J Endocrinol 161:281–288

    CAS  PubMed  Google Scholar 

  • Bertrand S, Brunet FG, Escriva H, Parmentier G, Laudet V, Robinson-Rechavi M (2004) Evolutionary genomics of nuclear receptors: from twenty-five ancestral genes to derived endocrine systems. Mol Biol Evol 21:1923–1937

    CAS  PubMed  Google Scholar 

  • Bhasin S, Ravi J, Serra C, Singh R, Storer TW, Guo W, Travison TG, Basaria S (2012) Androgen effects on the skeletal muscle. In: Nieschlag R, Behre HM (eds) Testosterone: action, deficiency, substitution, 4th edn. Cambridge University Press, Cambridge, pp 191–206

    Google Scholar 

  • Bose M, Whittal RM, Miller WL, Bose HS (2008) Steroidogenic activity of StAR requires contact with mitochondrial VDAC1 and PCP. J Biol Chem 283:8837–8845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouloux PMG, Nieschlag E, Burger HG, Skakkebaek NE, Wu FCW, Handelsman DJ, Baker GHW, Ochsenkühn R, Syska A, McLachlan RI, Giwercman A, Conway AJ, Turner L, van Kuijk JHM, Voortman G (2003) Induction of spermatogenesis by recombinant follicle-stimulating hormone (Puregon) in hypogonadotropic azoospermic men who failed to respond to human chorionic gonadotropin alone. J Androl 24:604–611

    CAS  PubMed  Google Scholar 

  • Busch AS, Kliesch S, Tüttelmann F, Gromoll J (2015) FSHB -211G>T stratification for follicle-stimulating hormone treatment of male infertility patients: making the case for a pharmacogenetic approach in genetic functional secondary hypogonadism. Andrology 3:1050–1053

    CAS  PubMed  Google Scholar 

  • Caldeira-Brant AL, Martinelli LM, Marques MM, Reis AB, Martello R, Almeida FRCL, Chiarini-Garcia H (2020) A subpopulation of human Adark spermatogonia behaves as the reserve stem cell. Reproduction 159:437–451

    CAS  PubMed  Google Scholar 

  • Casarini L, Crépieux P (2019) Molecular mechanisms of action of FSH. Front Endocrinol (Lausanne) 10(305):1–10

    Google Scholar 

  • Casarini L, Crépieux P, Reiter E, Lazzaretti C, Paradiso E, Rochira V, Brigante G, Santi D, Simoni M (2020) FSH for the treatment of male infertility. Int J Mol Sci 21(2270):1–21

    Google Scholar 

  • Cheng CK, Leung PC (2005) Molecular biology of gonadotropin-releasing hormone (GnRH)-I, GnRH-II, and their receptors in humans. Endocr Rev 26:283–306

    CAS  PubMed  Google Scholar 

  • Claassen H, Monig H, Sel S, Werner JA, Paulsen F (2006) Androgen receptors and gender-specific distribution of alkaline phosphatase in human thyroid cartilage. Histochem Cell Biol 126:381–388

    CAS  PubMed  Google Scholar 

  • Deuster D, Matulat P, Knief A, Zitzmann M, Rosslau K, Szukaj M, am Zehnhoff-Dinnesen A, Schmidt CM (2016) Voice deepening under testosterone treatment in female-to-male gender dysphoric individuals. Eur Arch Otorhinolaryngol 273:959–965

    PubMed  Google Scholar 

  • Dhillo W (2013) Timeline: kisspeptins. Lancet Diabetes Endocrinol 1:12–13

    PubMed  Google Scholar 

  • Dostalova P, Zatecka E, Dvorakova-Hortova K (2017) Of oestrogens and sperm: a review of the roles of oestrogens and oestrogen receptors in male reproduction. Int J Mol Sci 2017(904):1–23

    Google Scholar 

  • Dudek M, Ziarniak K, Sliwowska JH (2018) Kisspeptin and metabolism: the brain and beyond. Front Endocrinol (Lausanne) 9(145):1–8

    Google Scholar 

  • Dufourny L, Caraty A, Clarke IJ, Robinson JE, Skinner DC (2005) Progesterone-receptive dopaminergic and neuropeptide Y neurons project from the arcuate nucleus to gonadotropin-releasing hormone-rich regions of the ovine preoptic area. Neuroendocrinology 82:21–31

    CAS  PubMed  Google Scholar 

  • Eacker SM, Agrawal N, Qian K, Dichek HL, Gong EY, Lee K, Braun RE (2008) Hormonal regulation of testicular steroid and cholesterol homeostasis. Mol Endocrinol 22:623–635

    CAS  PubMed  Google Scholar 

  • Ergün S, Stingl J, Holstein AF (1994a) Segmental angioarchitecture of the testicular lobes in man. Andrologia 26:143–150

    PubMed  Google Scholar 

  • Ergün S, Stingl J, Holstein AF (1994b) Microvasculature of the human testis in correlation to Leydig cells and seminiferous tubules. Andrologia 26:255–262

    PubMed  Google Scholar 

  • Evans JJ (1999) Modulation of gonadotropin levels by peptides acting at the anterior pituitary gland. Endocr Rev 20:46–67

    CAS  PubMed  Google Scholar 

  • Falardeau J, Chung WC, Beenken A, Raivio T, Plummer L, Sidis Y, Jacobson-Dickman EE, Eliseenkova AV, Ma J, Dwyer A, Quinton R, Na S, Hall JE, Huot C, Alois N, Pearce SH, Cole LW, Hughes V, Mohammadi M, Tsai P, Pitteloud N (2008) Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest 118:2822–2831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng T, Bai JH, Xu XL, Liu Y (2019) Kisspeptin and its effect on mammalian spermatogensis. Curr Drug Metab 20:9–14

    CAS  PubMed  Google Scholar 

  • Fénichel P, Chevalier N, Lahlou N, Coquillard P, Wagner-Mahler K, Pugeat M, Panaïa-Ferrari P, Brucker-Davis F (2019) Endocrine disrupting chemicals interfere with Leydigc cell hormone pathways during testicular descent in idiopathic cryptorchidism. Front Endocrinol (Lausanne) 9(786):1–8

    Google Scholar 

  • Ferris HA, Shupnik MA (2006) Mechanisms for pulsatile regulation of the gonadotropin subunit genes by GNRH1. Biol Reprod 74:993–998

    CAS  PubMed  Google Scholar 

  • Fijak M, Meinhardt A (2006) The testis immune privilege. Immunol Rev 213:66–81

    CAS  PubMed  Google Scholar 

  • Franca LR, Ogawa T, Avarbock MR, Brinster RL, Russell LD (1998) Germ cell genotype controls cell cycle during spermatogenesis in the rat. Biol Reprod 59:1371–1377

    CAS  PubMed  Google Scholar 

  • Gerber J, Heinrich J, Brehm R (2016) Blood-testis barrier and Sertoli cell function: lessons from SCCx43KO mice. Reproduction 151:15–27

    Google Scholar 

  • Glaser R, York A, Dimitrakakis C (2016) Effect of testosterone therapy on the female voice. Climacteric 19:198–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griswold MD (2018) 50 years of spermatogenesis: Sertoli cells and their interactions with germ cells. Biol Reprod 99:87–100

    PubMed  PubMed Central  Google Scholar 

  • Guo J, Grow EJ, Mlcochova H, Maher GJ, Lindskog C, Nie X, Guo Y, Takei Y, Yun J, Cai L, Kim R, Carrell DT, Goriely A, Hotaling JM, Cairns BR (2018) The adult human testis transcriptional cell atlas. Cell Res 28:1141–1157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammes A, Andreassen TK, Spoelgen R, Raila J, Hubner N, Schulz H, Metzger J, Schweigert FJ, Luppa PB, Nykjaer A, Willnow TE (2005) Role of endocytosis in cellular uptake of sex steroids. Cell 122:751–762

    CAS  PubMed  Google Scholar 

  • Harms JF, Welch DR, Miele ME (2003) KISS1 metastasis suppression and emergent pathways. J Clin Exp 20:11–18

    CAS  Google Scholar 

  • Hassanin AM, Ahmed HH, Kaddah AN (2018) A global view of the pathophysiology of varicocele. Andrology 6:654–661

    CAS  PubMed  Google Scholar 

  • Heckmann L, Pock T, Tröndle I (2018) Neuhaus N (2018) The C-X-C signalling system in the rodent vs primate testis: impact on germ cell niche interaction. Reproduction 155:211–219

    Google Scholar 

  • Hedger MP (2002) Marcophages and the immune responsiveness of the testis. J Reprod Immunol 57:19–34

    CAS  PubMed  Google Scholar 

  • Hedger MP, Meinhardt A (2003) Cytokines and the immune-testicular axis. J Reprod Immunol 58:1–26

    CAS  PubMed  Google Scholar 

  • Heinrich A, De Falco T (2020) Essential roles of interstitial cells in testicular development and function. Andrology 8:903–914

    CAS  PubMed  Google Scholar 

  • Hilbold E, Distl O, Hoedemaker M, Wilkening S, Behr R, Rajkovic A, Langeheine M, Rode K, Jung K, Metzger J, Brehm RHJ (2020) Loss of Cx43 in murine sertoli cells leads to altered prepubertal Sertoli cell maturation and impairment of the mitosis-meiosis switch. Cell 9(676):1–16

    Google Scholar 

  • Hiort O, Werner R, Zitzmann M (2012) Pathophysiologyof the androgen receptor. In: Nieschlag R, Behre HM (eds) Testosterone: action, deficiency, substitution, 4th edn. Cambridge University Press, Cambridge, pp 33–59

    Google Scholar 

  • Holstein AF, Maekawa M, Nagano T, Davidoff MS (1996) Myofibroblasts in the lamina propria of human seminiferous tubules are dynamic structures of heterogenous phenotype. Arch Histol Cytol 59:109–125

    CAS  PubMed  Google Scholar 

  • Huhtaniemi I (2018) Mechanisms in Endocrinology: Hormonal regulation of spermatogenesis: mutant mice challenging old paradigms. Eur J Endocrinol 179:143–150

    Google Scholar 

  • Huhtaniemi IT, Pye SR, Holliday KL, Thomson W, O’Neill TW, Platt H, Payne D, John SL, Jiang M, Bartfai G, Boonen S, Casanueva FF, Finn JD, Forti G, Giwercman A, Han TS, Kula K, Lean ME, Pendleton N, Punab M, Silman AJ, Vanderschueren D, Labrie F, Wu FC, European Male Aging Study Group (2010) Effect of polymorphisms in selected genes involved in pituitary-testicular function on reproductive hormones and phenotype in aging men. J Clin Endocrinol Metab 95:1898–1908

    CAS  PubMed  Google Scholar 

  • Iliadou PK, Tsametis C, Kaprara A, Papadimas I, Goulis DG (2015) The Sertoli cell: novel clinical potentiality. Hormones (Athens) 14:504–514

    PubMed  Google Scholar 

  • Irfan S, Ehmcke J, Shahab M, Wistuba J, Schlatt S (2016) Immunocytochemical localization of kisspeptin and kisspeptin receptor in the primate testis. J Med Primatol 45:105–111

    CAS  PubMed  Google Scholar 

  • Jia Y, Hikim AP, Lue YH, Swerdloff RS, Vera Y, Zhang XS, Hu ZY, Li YC, Liu YX, Wang C (2007) Signaling pathways for germ cell death in adult cynomolgus monkeys (Macaca fascicularis) induced by mild testicular hyperthermia and exogenous testosterone treatment. Biol Reprod 77:83–92

    CAS  PubMed  Google Scholar 

  • Johnson L, McKenzie KS, Snell JR (1996) Partial wave in human seminiferous tubules appears to be a random occurrence. Tissue Cell 28:127–136

    CAS  PubMed  Google Scholar 

  • Jung A, Schuppe HC (2007) Influence of genital heat stress on semen quality in humans. Andrologia 39:203–215

    CAS  PubMed  Google Scholar 

  • Kaprara A, Huhtaniemi IT (2018) The hypothalamus-pituitary-gonad axis: tales of mice and men. Metabolism 86:3–17

    CAS  PubMed  Google Scholar 

  • Kim SH, Hu Y, Cadman S, Bouloux P (2008) Diversity in fibroblast growth factor receptor 1 regulation: learning from the investigation of Kallmann syndrome. J Neuroendocrinol 20:141–163

    CAS  PubMed  Google Scholar 

  • Kinniburgh D, Anderson RA, Baird DT (2001) Suppression of spermatogenesis with desogestrel and testosterone pellets is not enhanced by addition of finasteride. J Androl 22:88–95

    CAS  PubMed  Google Scholar 

  • Kirby M, Hackett G, Ramachandran S (2019) Testosterone and the heart. Eur Cardiol 14:103–110

    PubMed  PubMed Central  Google Scholar 

  • Klocker H, Gromoll J, Cato ACB (2004) The androgen receptor: molecular biology. In: Nieschlag E, Behre HM (eds) Testosterone: Action, deficiency, substitution, 3rd edn. Cambridge University Press, Cambridge, pp 39–92

    Google Scholar 

  • Krieger T, Simons BD (2015) Dynamic stem cell heterogeneity. Development 142:1396–1406

    CAS  PubMed  Google Scholar 

  • Landreh L, Spinnler K, Schubert K, Häkkinen MR, Auriola S, Poutanen M, Söder O, Svechnikov K, Mayerhofer A (2014) Human testicular peritubular cells host putative stem Leydig cells with steroidogenic capacity. J Clin Endocrinol Metab 99:1227–1235

    Google Scholar 

  • Lei ZM, Mishra S, Zou W, Xu M, Foltz M, Li X, Rao CV (2001) Targeted disruption of luteinizing hormone/human chorionic gonadotropin receptor gene. Mol Endocrinol 15:184–200

    CAS  PubMed  Google Scholar 

  • Li L, Mao B, Wu S, Lian Q, Ge RS, Silvestrini B, Cheng CY (2018) Regulation of spermatid polarity by the actin- and microtubule (MT)-based cytoskeletons. Semin Cell Dev Biol 81:88–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindstedt G, Nystrom E, Matthews C, Ernest I, Janson PO, Chatterjee K (1998) Follitropin (FSH) deficiency in an infertile male due to FSHbeta gene mutation. A syndrome of normal puberty and virilization but underdeveloped testicles with azoospermia, low FSH but high lutropin and normal serum testosterone concentrations. Clin Chem Lab Med 36:663–665

    CAS  PubMed  Google Scholar 

  • Lorigo M, Mariana M, Lemos MC, Cairrao E (2020) Vascular mechanisms of testosterone: The non-genomic point of view. J Steroid Biochem Mol Biol 196:105496

    CAS  PubMed  Google Scholar 

  • Luetjens CM, Weinbauer GF, Wistuba J (2005) Primate spermatogenesis: new insights into comparative testicular organisation, spermatogenic efficiency and endocrine control. Biol Rev 80:475–488

    PubMed  Google Scholar 

  • Luetjens CM, Didolkar A, Kliesch S, Paulus W, Jeibmann A, Böcker W, Nieschlag E, Simoni M (2006) Tissue expression of the nuclear progesterone receptor in male non-human primates and men. J Endocrinol 189:529–539

    CAS  PubMed  Google Scholar 

  • Mäkelä JA, Koskenniemi JJ, Virtanen HE, Toppari J (2019) Testis development. Endocr Rev 40:857–905

    PubMed  Google Scholar 

  • Malik IA, Durairajanayagam D, Singh HJ (2019) Leptin and its actions on reproduction in males. Asian J Androl 21:296–299

    CAS  PubMed  Google Scholar 

  • Marshall GR, Ramaswamy S, Plant TM (2005) Gonadotropin-independent proliferation of the pale type A spermatogonia in the adult rhesus monkey (Macaca mulatta). Biol Reprod 73:222–229

    CAS  PubMed  Google Scholar 

  • Matthiesson KL, McLachlan RI, O’Donnell L, Frydenberg M, Robertson DM, Stanton PG, Meachem SJ (2006) The relative roles of follicle-stimulating hormone and luteinizing hormone in maintaining spermatogonial maturation and spermiation in normal man. J Clin Endocrinol Metab 91:3962–3969

    CAS  PubMed  Google Scholar 

  • Mayerhofer A (2013) Human testicular peritubular cells: more than meets the eye. Reproduction 145:107–116

    Google Scholar 

  • Mayerhofer A (2020) Peritubular cells of the human testis: prostaglandin E2 and more. Andrology 8:898–902

    CAS  PubMed  Google Scholar 

  • Mayerhofer A, Walenta L, Mayer C, Eubler K, Welter H (2018) Human testicular peritubular cells, mast cells and testicular inflammation. Andrologia 50:e1305

    Google Scholar 

  • McDonald EA, Smith JE, Cederberg RA, White BR (2016) Divergent activity of the gonadotropin-releasing hormone receptor gene promoter among genetic lines of pigs is partially conferred by nuclear factor (NF)-B, specificity protein (SP)1-like and GATA-4 binding sites. Reprod Biol Endocrinol 14:36

    PubMed  PubMed Central  Google Scholar 

  • Mesa H, Gilles S, Smith S, Dachel S, Larson W, Manivel JC (2015) The mystery of the vanishing Reinke crystals. Hum Pathol 46:600–606

    CAS  PubMed  Google Scholar 

  • Metzger E, Wissmann M, Schule R (2006) Histone demethylation and androgen-dependent transcription. Curr Opin Genet Dev 16:513–517

    CAS  PubMed  Google Scholar 

  • Millar RP, Pawson AJ, Morgan K, Rissman EF, Lu ZL (2008) Diversity of actions of GnRHs mediated by ligand-induced selective signaling. Front Neuroendocrinol 29:17–35

    CAS  PubMed  Google Scholar 

  • Miller WL (2007) StAR search-what we know about how the steroidogenic acute regulatory protein mediates mitochondrial cholesterol import. Mol Endocrinol 21:589–601

    CAS  PubMed  Google Scholar 

  • Modi DN, Shah C, Puri CP (2007) Non-genomic membrane progesterone receptors on human spermatozoa. Soc Reprod Fertil Suppl 63:515–529

    CAS  PubMed  Google Scholar 

  • Mruk DD, Cheng CY (2015) The mammalian blood-testis barrier: its biology and regulation. Endocr Rev 36:564–591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano M, McCarrey JYR, Brinster RL (2001) Primate spermatogonial cells colonize mouse testis. Biol Reprod 64:1409–1416

    CAS  PubMed  Google Scholar 

  • Ngan ES, Cheng PK, Leung PC, Chow BK (1999) Steroidogenic factor-1 interacts with a gonadotrope-specific element within the first exon of the human gonadotropin-releasing hormone receptor gene to mediate gonadotrope-specific expression. Endocrinology 140:2452–2462

    CAS  PubMed  Google Scholar 

  • Nieschlag E, Behre HM (eds) (2012) Testosterone: action, deficiency, substitution. Cambridge University Press, Cambridge, pp 1–569

    Google Scholar 

  • Nieschlag E, Nieschlag S (2019) Endocrine history: the history of discovery, synthesis and development of testosterone for clinical use. Eur J Endocrinol 180:R201–R212

    CAS  PubMed  Google Scholar 

  • Nightingale SS, Western P, Hutson JM (2008) The migrating gubernaculum grows like a “limb bud”. J Pediatr Surg 43:387–390

    PubMed  Google Scholar 

  • Nihi F, Gomes MLM, Carvalho FAR, Reis AB, Martello R, Melo RCN, Almeida FRCL, Chiarini-Garcia H (2017) Revisiting the human seminiferous epithelium cycle. Hum Reprod 32:1170–1182

    CAS  PubMed  Google Scholar 

  • Oatley JM, Brinster RL (2012) The germline stem cell niche unit in mammalian testes. Physiol Rev 92:577–595

    CAS  PubMed  Google Scholar 

  • Overstreet JW, Fuh VL, Gould J, Howards SS, Lieber MM, Hellstrom W, Shapiro S, Carroll P, Corfman RS, Petrou S, Lewis R, Toth P, Shown T, Roy J, Jarow JP, Bonilla J, Jacobsen CA, Wang DZ, Kaufman KD (1999) Chronic treatment with finasteride daily does not affect spermatogenesis or semen production in young men. J Urol 162:1295–1300

    CAS  PubMed  Google Scholar 

  • Palazzolo I, Gliozzi A, Rusmini P, Sau D, Crippa V, Simonini F, Onesto E, Bolzoni E, Poletti A (2008) The role of the polyglutamine tract in androgen receptor. J Steroid Biochem Mol Biol 108:245–253

    CAS  PubMed  Google Scholar 

  • Parekh PA, Garcia TX, Hofmann MC (2019) Regulation of GDNF expression in Sertoli cells. Reproduction 157:95–107

    Google Scholar 

  • Penning TM, Burczynski ME, Jez JM, Hung CF, Lin HK, Ma H, Moore M, Palackal N, Ratnam K (2000) Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem J 351:67–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Martínez P, Mikhailidis DP, Athyros VG, Bullo M, Couture P, Covas MI, de Koning L, Delgado-Lista J, Díaz-López A, Drevon CA, Estruch R, Esposito K, Fitó M, Garaulet M, Giugliano D, García-Ríos A, Katsiki N, Kolovou G, Lamarche B, Maiorino MI, Mena-Sánchez G, Muñoz-Garach A, Nikolic D, Ordovás JM, Pérez-Jiménez F, Rizzo M, Salas-Salvadó J, Schröder H, Tinahones FJ, de la Torre R, van Ommen B, Wopereis S, Ros E, López-Miranda J (2017) Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation. Nutr Rev 75:307–326

    PubMed  PubMed Central  Google Scholar 

  • Petersen PM, Pakkenberg B, Giwercman A (1996) The human testis studied using stereological methods. Acta Stereologica 15:181–185

    Google Scholar 

  • Phillip M, Arbelle JE, Segev Y, Parvari R (1998) Male hypogonadism due to a mutation in the gene for the beta-subunit of follicle-stimulating hormone. N Engl J Med 338:1729–1732

    CAS  PubMed  Google Scholar 

  • Piersma D, Verhoef-Post M, Berns EM, Themmen AP (2007) LH receptor gene mutations and polymorphisms: an overview. Mol Cell Endocrinol 260-262:282–286

    CAS  PubMed  Google Scholar 

  • Plant TM (2019) The neurobiological mechanism underlying hypothalamic GnRH pulse generation: the role of kisspeptin neurons in the arcuate nucleus. F1000Res. 8:F1000 Faculty Rev-982

    Google Scholar 

  • Pohl E, Höffken V, Schlatt S, Kliesch S, Gromoll J, Wistuba J (2019) Ageing in men with normal spermatogenesis alters spermatogonial dynamics and nuclear morphology in Sertoli cells. Andrology 7:827–839

    CAS  PubMed  Google Scholar 

  • Popa SM, Clifton DK, Steiner RA (2008) The role of kisspeptins and GPR54 in the neuroendocrine regulation of reproduction. Annu Rev Physiol 70:213–238

    CAS  PubMed  Google Scholar 

  • Punab AM, Grigorova M, Punab M, Adler M, Kuura T, Poolamets O, Vihljajev V, Žilaitienė B, Erenpreiss J, Matulevičius V, Laan M (2015) Carriers of variant luteinizing hormone (V-LH) among 1593 Baltic men have significantly higher serum LH. Andrology 3:512–519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajender S, Singh L, Thangaraj K (2007) Phenotypic heterogeneity of mutations in androgen receptor gene. Asian J Androl 9:147–179

    CAS  PubMed  Google Scholar 

  • Raleigh D, O’Donnell L, Southwick GJ, de Kretser DM, McLachlan RI (2004) Stereological analysis of the human testis after vasectomy indicates impairment of spermatogenic efficiency with increasing obstructive interval. Fertil Steril 81:1595–1603

    PubMed  Google Scholar 

  • Randall VA (2012) Androgens and hair: a biological paradox with clinical consequences. In: Nieschlag E, Behre HM (eds) Testosterone: action, deficiency, substitution. Cambridge University Press, Cambridge, pp 154–176

    Google Scholar 

  • Rochira V, Antonio L, Vanderschueren D (2018) EAA clinical guideline on management of bone health in the andrological outpatient clinic. Andrology 6:272–285

    CAS  PubMed  Google Scholar 

  • Rode K, Weider K, Damm OS, Wistuba J, Langeheine M, Brehm R (2018) Loss of connexin 43 in Sertoli cells provokes postnatal spermatogonial arrest, reduced germ cell numbers and impaired spermatogenesis. Reprod Biol 18:456–466

    PubMed  Google Scholar 

  • Rodprasert W, Virtanen HE, Mäkelä JA, Toppari J (2020) Hypogonadism and cryptorchidism. Front Endocrinol (Lausanne) 10:906

    PubMed  Google Scholar 

  • Romano F, Tripiciano A, Muciaccia B, De Cesaris P, Ziparo E, Palombi F, Filippini A (2005) The contractile phenotype of peritubular smooth muscle cells is locally controlled: possible implications in male fertility. Contraception 72:294–297

    PubMed  Google Scholar 

  • Rotgers E, Jørgensen A, Yao HHC (2018) At the crossroads of fate-somatic cell lineage specification in the fetal gonad. Endocr Rev 39:739–759

    PubMed  PubMed Central  Google Scholar 

  • Ruohonen ST, Poutanen M, Tena-Sempere M (2020) Role of kisspeptins in the control of the hypothalamic-pituitary-ovarian axis: old dogmas and new challenges. Fertil Steril 114:465–474

    CAS  PubMed  Google Scholar 

  • Ruwanpura SM, McLachlan RI, Matthiesson KL, Meachem SJ (2008) Gonadotrophins regulate germ cell survival, not proliferation, in normal adult men. Hum Reprod 23:403–411

    CAS  PubMed  Google Scholar 

  • Sansone A, Kliesch S, Isidori AM, Schlatt S (2019) AMH and INSL3 in testicular and extragonadal pathophysiology: what do we know? Andrology 7:131–138

    CAS  PubMed  Google Scholar 

  • Saudan C, Baume N, Robinson N, Avois L, Mangin P, Saugy M (2006) Testosterone and doping control. Br J Sports Med 40:21–24

    Google Scholar 

  • Schell C, Albrecht M, Mayer C, Schwarzer JU, Frungieri MB, Mayerhofer A (2008) Exploring human testicular peritubular cells: identfication of secretory products and regulation by tumor necrosis factor-α. Endocrinology 149:1678–1686

    CAS  PubMed  Google Scholar 

  • Schlatt S, Ehmcke J (2014) Regulation of spermatogenesis: an evolutionary biologist’s perspective. Semin Cell Dev Biol 29:2–16

    CAS  PubMed  Google Scholar 

  • Schlatt S, Rosiepen G, Weinbauer GF, Rolf C, Brook PF, Nieschlag E (1999) Germ cell transfer into rat, bovine, monkey and human testis. Hum Reprod 14:144–150

    CAS  PubMed  Google Scholar 

  • Schlatt S, Ehmcke J, Wistuba J (2016) Physiologische Grundlagen der männlichen Fertilität. Urol A 55:868–876

    CAS  Google Scholar 

  • Schubert M, Kaldewey S, Pérez Lanuza L, Krenz H, Dugas M, Berres S, Kliesch S, Wistuba J, Gromoll J (2019) Does the FSHB c.-211G>T polymorphism impact Sertoli cell number and the spermatogenic potential in infertile patients? Andrology 8:1030–1037

    Google Scholar 

  • Schulze W, Rehder U (1984) Organization and morphogenesis of the human seminiferous epithelium. Cell Tiss Res 237:395–407

    CAS  Google Scholar 

  • Selva DM, Bassas L, Munell F, Mata A, Tekpetey F, Lewis JG, Hammond GL (2005) Human sperm sex hormone-binding globulin isoform: characterization and measurement by time-resolved fluorescence immunoassay. J Clin Endocrinol Metab 90:6275–6282

    CAS  PubMed  Google Scholar 

  • Setchell BP (1999) Blood-testis barrier. In: Knobil E, Neill JD (eds) Encyclopedia of reproduction. Academic Press, San Diego, pp 375–381

    Google Scholar 

  • Sharma S, Wistuba J, Pock T, Schlatt S, Neuhaus N (2019) Spermatogonial stem cells: updates from specification to clinical relevance. Hum Reprod Update 25:275–297

    CAS  PubMed  Google Scholar 

  • Sharpe RM, Walker M, Millar MR, Atanassova N, Morris K, McKinnell C, Saunders PT, Fraser HM (2000) Effect of neonatal gonadotropin-releasing hormone antagonist administration on Sertoli cell number and testicular development in the marmoset: comparison with the rat. Biol Reprod 62:1685–1693

    CAS  PubMed  Google Scholar 

  • Shima Y (2019) Development of fetal and adult Leydig cells. Reprod Med Biol 18:323–330

    PubMed  PubMed Central  Google Scholar 

  • Shiraishi K, Matsuyama H (2017) Gonadotoropin actions on spermatogenesis and hormonal therapies for spermatogenic disorders. Endocr J 64:123–131

    CAS  PubMed  Google Scholar 

  • Shukla GC, Plaga AR, Shankar E, Gupta S (2016) Androgen receptor-related diseases: what do we know? Andrology 4:366–381

    CAS  PubMed  Google Scholar 

  • Simoni M, Gromoll J, Nieschlag E (1997) The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology and pathophysiology. Endocr Rev 18:739–773

    CAS  PubMed  Google Scholar 

  • Smedlund KB, Hill JW (2020) The role of non-neuronal cells in hypogonadotropic hypogonadism. Mol Cell Endocrinol 518:110996

    CAS  PubMed  Google Scholar 

  • Soerensen RR, Johannsen TH, Skakkebaek NE, Rajpert-De Meyts E (2016) Leydig cell clustering and Reinke crystal distribution in relation to hormonal function in adult patients with testicular dysgenesis syndrome (TDS) including cryptorchidism. Hormones (Athens) 15:518–526

    PubMed  Google Scholar 

  • Sohni A, Tan K, Song HW, Burow D, de Rooij DG, Laurent L, Hsieh TC, Rabah R, Hammoud SS, Vicini E, Wilkinson MF, Sohni A (2019) The neonatal and adult Human testis defined at the single-cell level. Cell Rep 26:1501–1517e4

    PubMed  PubMed Central  Google Scholar 

  • Sriraman V, Anbalagan M, Rao AJ (2005) Hormonal regulation of Leydig cell proliferation and differentiation in rodent testis: a dynamic interplay between gonadotrophins and testicular factors. Reprod Biomed Online 11:507–518

    CAS  PubMed  Google Scholar 

  • Stamatiades GA, Kaiser UB (2018) Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression. Mol Cell Endocrinol 463:131–141

    CAS  PubMed  Google Scholar 

  • Stamatiades GA, Carroll RS, Kaiser UB (2019) GnRH-A key regulator of FSH. Endocrinology 160:57–66

    CAS  PubMed  Google Scholar 

  • Strünker T, Goodwin N, Brenker C, Kashikar ND, Weyand I, Seifert R, Kaupp UB (2011) The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 471:382–386

    PubMed  Google Scholar 

  • Suarez-Quian CA, Martinez-Garcia F, Nistal M, Regadera J (1999) Androgen receptor distribution in adult human testis. J Clin Endocrinol Metab 84:350–358

    CAS  PubMed  Google Scholar 

  • Takeda K, Toda K, Saibara T, Nakagawa M, Saika K, Onishi T, Sugiura T, Shizuta Y (2003) Progressive development of insulin resistance phenotype in male mice with complete aromatase (CYP19) deficiency. J Endocrinol 176:237–246

    CAS  PubMed  Google Scholar 

  • Tena-Sempere M (2008) Ghrelin and reproduction: ghrelin as novel regulator of the gonadotropic axis. Vitam Horm 77:285–300

    CAS  PubMed  Google Scholar 

  • Tirabassi G, Cignarelli A, Perrini S, Muti N, Furlani G, Gallo M,Pallotti F, Paoli D, Giorgino F, Lombardo F, Gandini F, Lenzi A, Balercia G (2015) Influence of CAG repeat polymorphism on the targets of testosterone action. Int J Endocrinol 298107

    Google Scholar 

  • Tobet SA, Schwarting GA (2006) Recent progress in gonadotropin-releasing hormone neuronal migration. Endocrinology 147:1159–1165

    CAS  PubMed  Google Scholar 

  • Topaloğlu AK (2017) Update on the genetics of idiopathic hypogonadotropic hypogonadism. J Clin Res Pediatr Endocrinol 9(Suppl 2):113–122

    PubMed  PubMed Central  Google Scholar 

  • Troppmann B, Kleinau G, Krause G, Gromoll J (2013) Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor. Hum Reprod Update 19:583–602

    CAS  PubMed  Google Scholar 

  • Tüttelmann F, Laan M, Grigorova M, Punab M, Sõber S, Gromoll J (2012) Combined effects of the variants FSHB -211G>T and FSHR 2039A>G on male reproductive parameters. J Clin Endocrinol Metab 97:3639–3647

    PubMed  Google Scholar 

  • Valimaki VV, Alfthan H, Ivaska KK, Loyttyniemi E, Pettersson K, Stenman UH, Valimaki MJ (2004) Serum estradiol, testosterone, and sex hormone-binding globulin as regulators of peak bone mass and bone turnover rate in young Finnish men. J Clin Endocrinol Metab 89:3785–3789

    PubMed  Google Scholar 

  • Vandenput L, Mellstrom D, Lorentzon M, Swanson C, Karlsson MK, Brandberg J, Lonn L, Orwoll E, Smith U, Labrie F, Ljunggren O, Tivesten A, Ohlsson C (2007) Androgens and glucuronidated androgen metabolites are associated with metabolic risk factors in men. J Clin Endocrinol Metab 92:4130–4137

    CAS  PubMed  Google Scholar 

  • Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, Börjesson AE, Ohlsson C (2014) Sex steroid actions in male bone. Endocr Rev 35:906–960

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Eckardstein S, Syska A, Gromoll J, Kamischke A, Simoni M, Nieschlag E (2001) Inverse correlation between sperm concentration and number of androgen receptor CAG repeats in normal men. J Clin Endocrinol Metab 86:2585–2590

    Google Scholar 

  • Wang C, McDonald V, Leung A, Superlano L, Berman N, Hull L, Swerdloff RS (1997) Effect of increased scrotal temperature on sperm production in normal men. Fertil Steril 68:334–339

    CAS  PubMed  Google Scholar 

  • Weinbauer GF, Schlatt S, Walter V, Nieschlag E (2001) Testosterone-induced inhibition of spermatogenesis is more closely related to suppression of FSH than to testicular androgen levels in the cynomolgus monkey (Macaca fascicularis). J Endocrinol 168:25–38

    CAS  PubMed  Google Scholar 

  • Weinbauer GF, Bergmann M, Lütjens CM, Cantz T, Nieschlag E (2019) Reproduktion. In: Speckmann E-J, Hescheler J, Köhling R (eds) Physiologie, 7th edn. München, Auflage, Urban & Fischer, pp 661–687

    Google Scholar 

  • Welsh M, Moffat L, Belling K, de França LR, Segatelli TM, Saunders PTK, Sharpe RM, Smith LB (2012) Androgen receptor signalling in peritubular myoid cells is essential for normal differentiation and function of adult Leydig cells. Int J Androl 35:25–40

    CAS  PubMed  Google Scholar 

  • West JB (2001) Snorkel breathing in the elephant explains the unique anatomy of its pleura. Respir Physiol 126:1–8

    CAS  PubMed  Google Scholar 

  • Wistuba J, Schrod A, Greve B, Hodges KJ, Aslam H, Weinbauer GF, Luetjens CM (2003) Organization of the seminiferous epithelium in primates: relationship to spermatogenic efficiency, phylogeny and mating system. Biol Reprod 69:582–591

    CAS  PubMed  Google Scholar 

  • Wistuba J, Stukenborg JB, Luetjens CM (2007) Mammalian spermatogenesis. Funct Dev Embryol 1:99–116

    Google Scholar 

  • Wistuba J, Luetjens CM, Ehmcke J, Redmann K, Damm OS, Steinhoff A, Sandhowe-Klaverkamp R, Nieschlag E, Simoni M, Schlatt S (2013) Experimental endocrine manipulation by contraceptive regimen in the male marmoset (Callithrix jacchus). Reproduction 145:439–451

    CAS  PubMed  Google Scholar 

  • Yan HH, Mruk DD, Wong EW, Lee WM, Cheng CY (2008) An autocrine axis in the testis that coordinates spermiation and blood-testis-barrier restructuring during spermatogenesis. Proc Natl Acad Sci U S A 105:8950–8955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Sukeno M, Nabeshima Y (2007) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317:1722–1726

    CAS  PubMed  Google Scholar 

  • Zannini C, Turchetti S, Guarch R, Buffa D, Psece C (1999) Cell counting and three-dimensional reconstruction to identify a cellular wave in human spermatogenesis. Ann Quant Cytol Histol 21:358–362

    CAS  Google Scholar 

  • Zavattaro M, Ceruti C, Motta G, Allasia S, Marinelli L, Di Bisceglie C, Tagliabue MP, Sibona M, Rolle L, Lanfranco F (2018) Treating varicocele in 2018: current knowledge and treatment options. J Endocrinol Investig 41:1365–1375

    CAS  Google Scholar 

  • Zhang C, Yeh S, Chen YT, Wu CC, Chuang KH, Lin HY, Wang RS, Chang YJ, Mendis-Handagama C, Hu L, Lardy H, Chang C (2006) Oligozoospermia with normal fertility in male mice lacking the androgen receptor in testis peritubular myoid cells. Proc Natl Acad Sci U S A 103:17718–17723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhengwei Y, Wreford NG, Royce P, de Kretser DM, McLachlan RI (1998) Stereological evaluation of human spermatogenesis after suppression by testosterone treatment: heterogeneous pattern of spermatogenic impairment. J Clin Endocrinol Metab 83:1284–1291

    CAS  PubMed  Google Scholar 

  • Zitzmann M (2020) Testosterone, mood, behaviour and quality of life. Andrology, epub ahead of print. https://doi.org/10.1111/andr.12867

  • Zuccarello D, Ferlin A, Vinanzi C, Prana E, Garolla A, Callewaert L, Claessens F, Brinkmann AO, Foresta C (2008) Detailed functional studies on androgen receptor mild mutations demonstrate their association with male infertility. Clin Endocrinol 68:580–588

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Wistuba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wistuba, J., Neuhaus, N., Nieschlag, E. (2023). Physiology of Testicular Function. In: Nieschlag, E., Behre, H.M., Kliesch, S., Nieschlag, S. (eds) Andrology. Springer, Cham. https://doi.org/10.1007/978-3-031-31574-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31574-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31573-2

  • Online ISBN: 978-3-031-31574-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics