Skip to main content

Teleparallel Gravity

  • Chapter
  • First Online:
Modified and Quantum Gravity

Part of the book series: Lecture Notes in Physics ((LNP,volume 1017))

Abstract

In general relativity, the only dynamical field describing the gravitational interaction of matter, is the metric. It induces the causal structure of spacetime, governs the motion of physical bodies through its Levi-Civita connection, and mediates gravity via the curvature of this connection. While numerous modified theories of gravity retain these principles, it is also possible to introduce another affine connection as a fundamental field, and consider its properties—curvature, torsion, nonmetricity—as the mediators of gravity. In the most general case, this gives rise to the class of metric-affine gravity theories, while restricting to metric-compatible connections, for which nonmetricity vanishes, comprises the class of Poincaré gauge theories. Alternatively, one may also consider connections with vanishing curvature. This assumption yields the class of teleparallel gravity theories. This chapter gives a simplified introduction to teleparallel gravity, with a focus on performing practical calculations, as well as an overview of the most commonly studied classes of teleparallel gravity theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This equation takes the same role as \(\stackrel {\circ }{\nabla }_{\nu }G_{\mu }{ }^{\nu } = 0\) for the Einstein tensor, which is satisfied identically as a consequence of the Bianchi identities.

  2. 2.

    In the literature, the abbreviation TEGR is more common, since it was developed prior to the other equivalent theories. Another proposed nomenclature is “antisymmetric teleparallel equivalent of general relativity” (ATEGR) [27], since the distortion tensor becomes antisymmetric in its first two indices. However, the term “metric” or “metric-compatible” is more abundant in the contemporary literature on teleparallel gravity to denote the case of vanishing nonmetricity.

  3. 3.

    They can be reduced to second order by introducing an auxiliary scalar field.

  4. 4.

    This term is also, more commonly, used for a particular subclass of theories, in which \(2a_1 + a_2 = 0\) and \(a_3 = -1\), so that there is only one free parameter besides the gravitational constant \(\kappa \) [34].

References

  1. E.N. Saridakis et al., Modified Gravity and Cosmology: An Update by the CANTATA Network (Springer, Cham, 2021). arxiv.org/abs/2105.12582, https://doi.org/10.1007/978-3-030-83715-0

  2. A. Einstein, Riemann-Geometrie mit Aufrechterhaltung des Begriffes des Fernparallelismus. Sitzber. Preuss. Akad. Wiss., 217–221 (1928). http://echo.mpiwg-berlin.mpg.de/MPIWG:YP5DFQU1, https://doi.org/10.1002/3527608958.ch36

  3. R. Aldrovandi, J. Geraldo Pereira, Teleparallel Gravity, vol. 173 (Springer, Dordrecht, 2013). https://doi.org/10.1007/978-94-007-5143-9

    Book  MATH  Google Scholar 

  4. S. Bahamonde, K.F. Dialektopoulos, C. Escamilla-Rivera, G. Farrugia, V. Gakis, M. Hendry, M. Hohmann, J. Levi-Said, J. Mifsud, E. Di Valentino, Teleparallel gravity: from theory to cosmology. Rept. Prog. Phys. 86(2), 026901 (2023). https://doi.org/10.1088/1361-6633/ac9cef

  5. J.M. Nester, H.-J. Yo, Symmetric teleparallel general relativity. Chin. J. Phys. 37, 113 (1999). http://www.ps-taiwan.org/cjp/download.php?type=paper&vol=37&num=2&page=113, arXiv:gr-qc/9809049

  6. J. Beltrán Jiménez, L. Heisenberg, D. Iosifidis, A. Jiménez-Cano, T.S. Koivisto, General teleparallel quadratic gravity. Phys. Lett. B 805, 135422 (2020). arXiv:1909.09045, https://doi.org/10.1016/j.physletb.2020.135422

  7. F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Ne’eman, Metric affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 258, 1–171 (1995). arXiv:gr-qc/9402012, https://doi.org/10.1016/0370-1573(94)00111-F

  8. M. Blagojevic, Gravitation and Gauge Symmetries (Institute of Physics, Bristol, 2002)

    Google Scholar 

  9. F.W. Hehl, P. Von Der Heyde, G.D. Kerlick, J.M. Nester, General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48, 393–416 (1976). https://doi.org/10.1103/RevModPhys.48.393

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. M. Blagojević, F.W. Hehl (eds.), Gauge Theories of Gravitation: A Reader with Commentaries (World Scientific, Singapore, 2013). https://doi.org/10.1142/p781

    MATH  Google Scholar 

  11. M. Hohmann, Variational principles in teleparallel gravity theories. Universe 7(5), 114 (2021). arXiv:2104.00536, https://doi.org/10.3390/universe7050114

  12. M. Hohmann, Spacetime and observer space symmetries in the language of Cartan geometry. J. Math. Phys. 57(8), 082502 (2016). arXiv:1505.07809, https://doi.org/10.1063/1.4961152

  13. M. Hohmann, L. Järv, M. Krššák, C. Pfeifer, Modified teleparallel theories of gravity in symmetric spacetimes. Phys. Rev. D 100(8), 084002 (2019). arXiv:1901.05472, https://doi.org/10.1103/PhysRevD.100.084002

  14. F. D’Ambrosio, L. Heisenberg, S. Kuhn, Revisiting cosmologies in teleparallelism. Class. Quant. Grav. 39(2), 025013 (2022). arXiv:2109.04209, https://doi.org/10.1088/1361-6382/ac3f99

  15. M. Hohmann, General covariant symmetric teleparallel cosmology. Phys. Rev. D 104(12), 124077 (2021). arXiv:2109.01525, https://doi.org/10.1103/PhysRevD.104.124077

  16. M. Hohmann, Complete classification of cosmological teleparallel geometries. Int. J. Geom. Meth. Mod. Phys. 18(supp01), 2140005 (2021). arXiv:2008.12186, https://doi.org/10.1142/S0219887821400053

  17. M. Bruni, S. Matarrese, S. Mollerach, S. Sonego, Perturbations of space-time: Gauge transformations and gauge invariance at second order and beyond. Class. Quant. Grav. 14, 2585–2606 (1997). arXiv:gr-qc/9609040, https://doi.org/10.1088/0264-9381/14/9/014

  18. S. Sonego, M. Bruni, Gauge dependence in the theory of nonlinear space-time perturbations. Commun. Math. Phys. 193, 209–218 (1998). arXiv:gr-qc/9708068, https://doi.org/10.1007/s002200050325

  19. M. Bruni, S. Sonego, Observables and gauge invariance in the theory of nonlinear space-time perturbations: Letter to the editor. Class. Quant. Grav. 16, L29–L36 (1999). arXiv:gr-qc/9906017, https://doi.org/10.1088/0264-9381/16/7/101

  20. M. Hohmann., C. Pfeifer, J. Levi Said, U. Ualikhanova, Propagation of gravitational waves in symmetric teleparallel gravity theories. Phys. Rev. D 99(2), 024009 (2019). arXiv:1808.02894, https://doi.org/10.1103/PhysRevD.99.024009

  21. K. Flathmann, M. Hohmann, Post-Newtonian limit of generalized symmetric teleparallel gravity. Phys. Rev. D 103(4), 044030 (2021). arXiv:2012.12875, https://doi.org/10.1103/PhysRevD.103.044030

  22. M. Hohmann, Gauge-invariant post-newtonian perturbations in symmetric teleparallel gravity. Astron. Rep. 65(10), 952–956 (2021). arXiv:2111.06255, https://doi.org/10.1134/S1063772921100140

  23. M. Hohmann, M. Krššák, C. Pfeifer, U. Ualikhanova, Propagation of gravitational waves in teleparallel gravity theories. Phys. Rev. D 98(12), 124004 (2018). arXiv:1807.04580, https://doi.org/10.1103/PhysRevD.98.124004

  24. U. Ualikhanova, M. Hohmann, Parametrized post-Newtonian limit of general teleparallel gravity theories. Phys. Rev. D 100(10), 104011 (2019). arXiv:1907.08178, https://doi.org/10.1103/PhysRevD.100.104011

  25. A. Golovnev, T. Koivisto, Cosmological perturbations in modified teleparallel gravity models. J. Cosmol. Astropart. Phys. 11, 012 (2018). arXiv:1808.05565, https://doi.org/10.1088/1475-7516/2018/11/012

  26. S. Bahamonde, K.F. Dialektopoulos, M. Hohmann, J. Levi Said, C. Pfeifer, E.N. Saridakis, Perturbations in non-flat cosmology for \(f(T)\) gravity. Eur. Phys. J. C 83(3), 193 (2023) https://doi.org/10.1140/epjc/s10052-023-11322-3

  27. A. Baldazzi, O. Melichev, R. Percacci, Metric-affine gravity as an effective field theory. Ann. Phys. 438, 168757 (2022). arXiv:2112.10193, https://doi.org/10.1016/j.aop.2022.168757

  28. J.W. Maluf, The teleparallel equivalent of general relativity. Ann. Phys. 525, 339–357 (2013). arXiv:1303.3897, https://doi.org/10.1002/andp.201200272

  29. C.G. Boehmer, E. Jensko, Modified gravity: a unified approach. Phys. Rev. D 104(2), 024010 (2021). arXiv:2103.15906, https://doi.org/10.1103/PhysRevD.104.024010

  30. J. Beltrán Jiménez, L. Heisenberg, T. Koivisto, Coincident general relativity. Phys. Rev. D 98(4), 044048 (2018). arXiv:1710.03116, https://doi.org/10.1103/PhysRevD.98.044048

  31. G.R. Bengochea, R. Ferraro, Dark torsion as the cosmic speed-up. Phys. Rev. D 79, 124019 (2009). arXiv:0812.1205, https://doi.org/10.1103/PhysRevD.79.124019

  32. E.V. Linder, Einstein’s other gravity and the acceleration of the Universe. Phys. Rev. D 81, 127301 (2010). [Erratum: Phys. Rev. D 82, 109902 (2010)]. arXiv:1005.3039, https://doi.org/10.1103/PhysRevD.81.127301

  33. M. Krššák, E.N. Saridakis, The covariant formulation of f(T) gravity. Class. Quant. Grav. 33(11), 115009 (2016). arXiv:1510.08432, https://doi.org/10.1088/0264-9381/33/11/115009

  34. K. Hayashi, T. Shirafuji, New general relativity. Phys. Rev. D 19, 3524–3553 (1979). [Addendum: Phys. Rev. D 24, 3312–3314 (1982)]. https://doi.org/10.1103/PhysRevD.19.3524

  35. L. Järv, M. Rünkla, M. Saal, O. Vilson, Nonmetricity formulation of general relativity and its scalar-tensor extension. Phys. Rev. D 97(12), 124025 (2018). arXiv:1802.00492, https://doi.org/10.1103/PhysRevD.97.124025

  36. M. Rünkla, O. Vilson, Family of scalar-nonmetricity theories of gravity. Phys. Rev. D 98(8), 084034 (2018). arXiv:1805.12197, https://doi.org/10.1103/PhysRevD.98.084034

  37. C.-Q. Geng, C.-C. Lee, E.N. Saridakis, Y.-P. Wu, “Teleparallel” dark energy. Phys. Lett. B 704, 384–387 (2011). arXiv:1109.1092, https://doi.org/10.1016/j.physletb.2011.09.082

  38. M. Hohmann., L. Järv, U. Ualikhanova, Covariant formulation of scalar-torsion gravity. Phys. Rev. D 97(10), 104011 (2018). arXiv:1801.05786, https://doi.org/10.1103/PhysRevD.97.104011

  39. M. Hohmann, Scalar-torsion theories of gravity III: analogue of scalar-tensor gravity and conformal invariants. Phys. Rev. D 98(6), 064004 (2018). arXiv:1801.06531, https://doi.org/10.1103/PhysRevD.98.064004

  40. T.P. Sotiriou, V. Faraoni, f(R) Theories of gravity. Rev. Mod. Phys. 82, 451–497 (2010). arXiv:0805.1726, https://doi.org/10.1103/RevModPhys.82.451

  41. R.-J. Yang, Conformal transformation in \(f(T)\) theories. Europhys. Lett. 93(6), 60001 (2011). arXiv:1010.1376, https://doi.org/10.1209/0295-5075/93/60001

  42. J. Beltrán Jiménez, K.F. Dialektopoulos, Non-linear obstructions for consistent new general relativity. J. Cosmol. Astropart. Phys. 01, 018 (2020). arXiv:1907.10038, https://doi.org/10.1088/1475-7516/2020/01/018

  43. A. Golovnev, M.-J. Guzmán, Foundational issues in f(T) gravity theory. Int. J. Geom. Methods Mod. Phys. 18(supp01), 2140007 (2021). arXiv:2012.14408, https://doi.org/10.1142/S0219887821400077

Download references

Acknowledgements

The author thanks Claus Lämmerzahl and Christian Pfeifer for the kind invitation to contribute this book chapter. He acknowledges the full financial support of the Estonian Ministry for Education and Science through the Personal Research Funding Grant PRG356, as well as the European Regional Development Fund through the Center of Excellence TK133 “The Dark Side of the Universe”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Hohmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hohmann, M. (2023). Teleparallel Gravity. In: Pfeifer, C., Lämmerzahl, C. (eds) Modified and Quantum Gravity. Lecture Notes in Physics, vol 1017. Springer, Cham. https://doi.org/10.1007/978-3-031-31520-6_4

Download citation

Publish with us

Policies and ethics