Skip to main content

Radio Pulsars as a Laboratory for Strong-Field Gravity Tests

  • Chapter
  • First Online:
Modified and Quantum Gravity

Part of the book series: Lecture Notes in Physics ((LNP,volume 1017))

  • 497 Accesses

Abstract

General relativity offers a classical description to gravitation and spacetime, and is a cornerstone for modern physics. It has passed a number of empirical tests with flying colours, mostly in the weak-gravity regimes, but nowadays also in the strong-gravity regimes. Radio pulsars provide one of the earliest extrasolar laboratories for gravity tests. They, in possession of strongly self-gravitating bodies, i.e. neutron stars, are playing a unique role in the studies of strong-field gravity. Radio timing of binary pulsars enables very precise measurements of system parameters, and the pulsar timing technology is extremely sensitive to various types of changes in the orbital dynamics. If an alternative gravity theory causes modifications to binary orbital evolution with respect to general relativity, the theory prediction can be confronted with timing results. In this chapter, we review the basic concepts in using radio pulsars for strong-field gravity tests, with the aid of some recent examples in this regard, including tests of gravitational dipolar radiation, massive gravity theories, and the strong equivalence principle. With more sensitive radio telescopes coming online, pulsars are to provide even more dedicated tests of strong gravity in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Currently, PSR J0737\(-\)3039A/B is the only discovered double neutron star system whose two neutron stars were both detected as pulsars [14, 41, 49], known as Pulsar A and Pulsar B.

  2. 2.

    https://www.atnf.csiro.au/people/pulsar/psrcat/.

  3. 3.

    In one case, a pulsar in a triple system, PSR J0337+1715, provides the best limit on the strong equivalence principle [9, 47, 59].

  4. 4.

    Unfortunately, we have not detected yet suitable neutron-star black-hole binaries for this test, which are also potentially very good testbeds [38].

  5. 5.

    Recall that there are numerous different models of Lorentz invariance violation or doubly special relativity, see Chaps. 1 or 2.

  6. 6.

    The conditions are that (i) the wave equation takes a standard form for the trace-reversed metric perturbation \(\bar {h}_{\mu \nu }\)

    $$\displaystyle \begin{aligned} \left( \Box -m_{\mathrm{g}}^{2}\right) \bar{h}_{\mu \nu}+16 \pi T_{\mu \nu}=0 \,, \end{aligned} $$
    (12.15)

    and the theory recovers the general relativity in the limit when \(m_{\mathrm {g}} \to 0\), namely, there is no van Dam-Veltman-Zakharov discontinuity [26].

References

  1. B.P. Abbott et al., GW170817: observation of gravitational waves from a binary beutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017)

    Google Scholar 

  2. B.P. Abbott et al., Tests of General Relativity with GW170817. Phys. Rev. Lett. 123(1), 011102 (2019)

    Google Scholar 

  3. B.P. Abbott et al., Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1. Phys. Rev. D 100(10), 104036 (2019)

    Google Scholar 

  4. R. Abbott et al., Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Phys. Rev. D 103(12), 122002 (2021)

    Google Scholar 

  5. R. Abbott et al., Tests of general relativity with GWTC-3 (2021). arXiv:2112.06861

    Google Scholar 

  6. K. Akiyama et al., First M87 event horizon telescope results. I. the shadow of the supermassive black hole. Astrophys. J. Lett. 875L1 (2019)

    Google Scholar 

  7. K. Akiyama et al., First sagittarius A* event horizon telescope results. I. the shadow of the supermassive black hole in the center of the milky way. Astrophys. J. Lett. 930(2), L12 (2022)

    Google Scholar 

  8. K. Akiyama et al., First sagittarius A* event horizon telescope results. VI. testing the black hole metric. Astrophys. J. Lett. 930(2), L17 (2022)

    Google Scholar 

  9. A.M. Archibald, N.V. Gusinskaia, J.W.T. Hessels, A.T. Deller, D.L. Kaplan, D.R. Lorimer, R.S. Lynch, S.M. Ransom, I.H. Stairs, Universality of free fall from the orbital motion of a pulsar in a stellar triple system. Nature 559(7712), 73–76 (2018)

    Article  ADS  Google Scholar 

  10. E. Berti, et al., Testing general relativity with present and future astrophysical observations. Class. Quant. Grav. 32, 243001 (2015)

    Article  ADS  Google Scholar 

  11. G.C. Bower, et al., Galactic Center Pulsars with the ngVLA. ASP Conf. Ser. 517, 793 (2018)

    ADS  Google Scholar 

  12. G.C. Bower, et al., Fundamental Physics with Galactic Center Pulsars. Bull. Am. Astron. Soc. 51(3), 438 (2019)

    Google Scholar 

  13. C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M. Burgay, et al., An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 426, 531–533 (2003)

    Article  ADS  Google Scholar 

  15. T. Damour, N. Deruelle, General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula. Ann. Inst. Henri Poincaré Phys. Théor. 44, 263–292 (1986)

    MATH  Google Scholar 

  16. T. Damour, G. Esposito-Farèse, Nonperturbative strong field effects in tensor-scalar theories of gravitation. Phys. Rev. Lett. 70, 2220–2223 (1993)

    Article  ADS  Google Scholar 

  17. T. Damour, G. Esposito-Farèse, Tensor-scalar gravity and binary pulsar experiments. Phys. Rev. D 54, 1474–1491 (1996)

    Article  ADS  Google Scholar 

  18. T. Damour, G. Schaefer, New tests of the strong equivalence principle using binary pulsar data. Phys. Rev. Lett. 66, 2549–2552 (1991)

    Article  ADS  Google Scholar 

  19. T. Damour, J.H. Taylor, Strong field tests of relativistic gravity and binary pulsars. Phys. Rev. D 45, 1840–1868 (1992)

    Article  ADS  Google Scholar 

  20. V.I. Danchev, D.D. Doneva, S.S. Yazadjiev, Constraining scalarization in scalar-Gauss-Bonnet gravity through binary pulsars. Phys. Rev. D 106, 124001 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  21. C. de Rham, A.J. Tolley, D.H. Wesley, Vainshtein mechanism in binary pulsars. Phys. Rev. D 87(4), 044025 (2013)

    Google Scholar 

  22. C. de Rham, J.T. Deskins, A.J. Tolley, S.-Y. Zhou, Graviton mass bounds. Rev. Mod. Phys. 89(2), 025004 (2017)

    Google Scholar 

  23. D.D. Doneva, S.S. Yazadjiev, New Gauss-Bonnet black holes with curvature-induced scalarization in extended scalar-tensor theories. Phys. Rev. Lett. 120(13), 131103 (2018)

    Google Scholar 

  24. D.M. Eardley, Observable effects of a scalar gravitational field in a binary pulsar. Astrophys. J. 196, L59–L62 (1975)

    Article  ADS  Google Scholar 

  25. G. Esposito-Farèse, Tests of scalar-tensor gravity. AIP Conf. Proc. 736(1), 35–52 (2004)

    Article  ADS  Google Scholar 

  26. L.S. Finn, P.J. Sutton, Bounding the mass of the graviton using binary pulsar observations. Phys. Rev. D 65, 044022 (2002)

    Article  ADS  MATH  Google Scholar 

  27. P.C.C. Freire, M. Kramer, N. Wex, Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars. Class. Quant. Grav. 29, 184007 (2012)

    Article  ADS  MATH  Google Scholar 

  28. P.C.C. Freire, N. Wex, G. Esposito-Farèse, J.P.W. Verbiest, M. Bailes, B.A. Jacoby, M. Kramer, I.H. Stairs, J. Antoniadis, G.H. Janssen, The relativistic pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor gravity. Mon. Not. R. Astron. Soc. 423, 3328 (2012)

    Article  ADS  Google Scholar 

  29. M. Guo, J. Zhao, L. Shao, Extended reduced-order surrogate models for scalar-tensor gravity in the strong field and applications to binary pulsars and gravitational waves. Phys. Rev. D 104(10), 104065 (2021)

    Google Scholar 

  30. G. Hobbs, et al., Development of a pulsar-based timescale. Mon. Not. R. Astron. Soc. 427, 2780–2787 (2012)

    Article  ADS  Google Scholar 

  31. H. Hu, M. Kramer, N. Wex, D.J. Champion, M.S. Kehl, Constraining the dense matter equation-of-state with radio pulsars. Mon. Not. R. Astron. Soc. 497(3), 3118–3130 (2020)

    Article  ADS  Google Scholar 

  32. Z. Hu, Y. Gao, R. Xu, L. Shao, Scalarized neutron stars in massive scalar-tensor gravity: X-ray pulsars and tidal deformability. Phys. Rev. D 104(10), 104014 (2021)

    Google Scholar 

  33. P. Jiang, et al., Commissioning progress of the FAST. Sci. China Phys. Mech. Astron. 62(5), 959502 (2019)

    Google Scholar 

  34. M. Khalil, R.F.P. Mendes, N. Ortiz, J. Steinhoff, Effective-action model for dynamical scalarization beyond the adiabatic approximation. Phys. Rev. D 106, 104016 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Kramer, Pulsars as probes of gravity and fundamental physics. Int. J. Mod. Phys. D 25(14), 1630029 (2016)

    Google Scholar 

  36. M. Kramer, D.C. Backer, J.M. Cordes, T.J.W. Lazio, B.W. Stappers, S. Johnston, Strong-field tests of gravity using pulsars and black holes. New Astron. Rev. 48, 993–1002 (2004)

    Article  ADS  Google Scholar 

  37. M. Kramer, et al., Strong-field gravity tests with the double pulsar. Phys. Rev. X 11(4), 041050 (2021)

    Google Scholar 

  38. K. Liu, R.P. Eatough, N. Wex, M. Kramer, Pulsar–black hole binaries: prospects for new gravity tests with future radio telescopes. Mon. Not. R. Astron. Soc. 445(3), 3115–3132 (2014)

    Article  ADS  Google Scholar 

  39. D.R. Lorimer, M. Kramer, Handbook of Pulsar Astronomy. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  40. J. Lu, K. Lee, R. Xu, Advancing Pulsar Science with the FAST. Sci. China Phys. Mech. Astron. 63(2), 229531 (2020)

    Google Scholar 

  41. A.G. Lyne, et al., A double-pulsar system: a rare laboratory for relativistic gravity and plasma physics. Science 303, 1153–1157 (2004)

    Article  ADS  Google Scholar 

  42. R.N. Manchester, Pulsars and gravity. Int. J. Mod. Phys. D 24(06), 1530018 (2015)

    Google Scholar 

  43. R.N. Manchester, G.B. Hobbs, A. Teoh, M. Hobbs, The Australia Telescope National Facility pulsar catalogue. Astron. J. 129, 1993 (2005)

    Article  ADS  Google Scholar 

  44. X. Miao, L. Shao, B.-Q. Ma, Bounding the mass of graviton in a dynamic regime with binary pulsars. Phys. Rev. D 99(12), 123015 (2019)

    Google Scholar 

  45. F.M. Ramazanoğlu, F. Pretorius, Spontaneous scalarization with massive fields. Phys. Rev. D 93(6), 064005 (2016)

    Google Scholar 

  46. N. Sennett, L. Shao, J. Steinhoff, Effective action model of dynamically scalarizing binary neutron stars. Phys. Rev. D 96(8), 084019 (2017)

    Google Scholar 

  47. L. Shao, Testing the strong equivalence principle with the triple pulsar PSR J0337+1715. Phys. Rev. D 93(8), 084023 (2016)

    Google Scholar 

  48. L. Shao, Degeneracy in Studying the Supranuclear Equation of State and Modified Gravity with Neutron Stars. AIP Conf. Proc. 2127(1), 020016 (2019)

    Google Scholar 

  49. L. Shao, General relativity withstands double pulsar’s scrutiny. APS Phys. 14, 173 (2021)

    Google Scholar 

  50. L. Shao, Imaging supermassive black hole shadows with a global very long baseline interferometry array. Front. Phys. (Beijing) 17(4), 44601 (2022)

    Google Scholar 

  51. L. Shao, N. Wex, Tests of gravitational symmetries with radio pulsars. Sci. China Phys. Mech. Astron. 59(9), 699501 (2016)

    Google Scholar 

  52. L. Shao, et al., Testing gravity with pulsars in the SKA era, in Advancing Astrophysics with the Square Kilometre Array, vol. AASKA14. Proceedings of Science (2015), p. 042

    Google Scholar 

  53. L. Shao, N. Sennett, A. Buonanno, M. Kramer, N. Wex, Constraining nonperturbative strong-field effects in scalar-tensor gravity by combining pulsar timing and laser-interferometer gravitational-wave detectors. Phys. Rev. X 7(4), 041025 (2017)

    Google Scholar 

  54. L. Shao, N. Wex, M. Kramer, Testing the universality of free fall towards dark matter with radio pulsars. Phys. Rev. Lett. 120(24), 241104 (2018)

    Google Scholar 

  55. L. Shao, N. Wex, S.-Y. Zhou, New graviton mass bound from binary pulsars. Phys. Rev. D 102(2), 024069 (2020)

    Google Scholar 

  56. H.O. Silva, J. Sakstein, L. Gualtieri, T.P. Sotiriou, E. Berti, Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling. Phys. Rev. Lett. 120(13), 131104 (2018)

    Google Scholar 

  57. I.H. Stairs, Testing general relativity with pulsar timing. Living Rev. Rel. 6, 5 (2003)

    Article  MATH  Google Scholar 

  58. J.H. Taylor, Pulsar timing and relativistic gravity. Phil. Trans. A. Math. Phys. Eng. Sci. 341(1660), 117–134 (1992)

    Google Scholar 

  59. G. Voisin, I. Cognard, P.C.C. Freire, N. Wex, L. Guillemot, G. Desvignes, M. Kramer, G. Theureau, An improved test of the strong equivalence principle with the pulsar in a triple star system. Astron. Astrophys. 638, A24 (2020)

    Article  ADS  Google Scholar 

  60. T.A. Wagner, S. Schlamminger, J.H. Gundlach, E.G. Adelberger, Torsion-balance tests of the weak equivalence principle. Class. Quant. Grav. 29, 184002 (2012)

    Article  ADS  Google Scholar 

  61. J.M. Weisberg, Y. Huang, Relativistic measurements from timing the binary pulsar PSR B1913+16. Astrophys. J. 829(1), 55 (2016)

    Google Scholar 

  62. A. Weltman, et al., Fundamental Physics with the Square Kilometre Array. Publ. Astron. Soc. Austral. 37, e002 (2020)

    Article  ADS  Google Scholar 

  63. N. Wex, Testing relativistic gravity with radio pulsars, in Frontiers in Relativistic Celestial Mechanics: Applications and Experiments, ed. by S.M. Kopeikin, vol. 2 (Walter de Gruyter GmbH, Berlin/Boston, 2014), p. 39

    Google Scholar 

  64. N. Wex, M. Kramer, Gravity tests with radio pulsars. Universe 6(9), 156 (2020)

    Google Scholar 

  65. C.M. Will. The confrontation between general relativity and experiment. Living Rev. Rel. 17, 4 (2014)

    Article  MATH  Google Scholar 

  66. R. Xu, Y. Gao, L. Shao, Strong-field effects in massive scalar-tensor gravity for slowly spinning neutron stars and application to X-ray pulsar pulse profiles. Phys. Rev. D 102(6), 064057 (2020)

    Google Scholar 

  67. R. Xu, Y. Gao, L. Shao, Neutron stars in massive scalar-Gauss-Bonnet gravity: Spherical structure and time-independent perturbations. Phys. Rev. D 105(2), 024003 (2022)

    Google Scholar 

  68. K. Yagi, D. Blas, E. Barausse, N. Yunes, Constraints on Einstein-Æther theory and Hořava gravity from binary pulsar observations. Phys. Rev. D 89(8), 084067 (2014). Erratum: Phys.Rev.D 90, 069902 (2014), Erratum: Phys.Rev.D 90, 069901 (2014)

    Google Scholar 

  69. S.S. Yazadjiev, D.D. Doneva, D. Popchev, Slowly rotating neutron stars in scalar-tensor theories with a massive scalar field. Phys. Rev. D 93(8), 084038 (2016)

    Google Scholar 

  70. J. Zhao, L. Shao, Z. Cao, B.-Q. Ma, Reduced-order surrogate models for scalar-tensor gravity in the strong field regime and applications to binary pulsars and GW170817. Phys. Rev. D 100(6), 064034 (2019)

    Google Scholar 

  71. J. Zhao, P.C.C. Freire, M. Kramer, L. Shao, N. Wex, Closing a spontaneous-scalarization window with binary pulsars. Class. Quant. Grav. 39(11), 11LT01 (2022)

    Google Scholar 

  72. W.W. Zhu, et al., Tests of gravitational symmetries with pulsar binary J1713+0747. Mon. Not. R. Astron. Soc. 482(3), 3249–3260 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the 740\({\mathrm {th}}\) WE-Heraeus-Seminar “Experimental Tests and Signatures of Modified and Quantum Gravity”, organized by Christian Pfeifer and Claus Lämmerzahl. LS was supported by the National SKA Program of China (2020SKA0120300), the National Natural Science Foundation of China (11975027, 11991053, 11721303), and the Max Planck Partner Group Program funded by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijing Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shao, L. (2023). Radio Pulsars as a Laboratory for Strong-Field Gravity Tests. In: Pfeifer, C., Lämmerzahl, C. (eds) Modified and Quantum Gravity. Lecture Notes in Physics, vol 1017. Springer, Cham. https://doi.org/10.1007/978-3-031-31520-6_12

Download citation

Publish with us

Policies and ethics