Skip to main content

Stellar and Substellar Objects in Modified Gravity

  • Chapter
  • First Online:
Modified and Quantum Gravity

Part of the book series: Lecture Notes in Physics ((LNP,volume 1017))

Abstract

The last findings on stellar and substellar objects in modified gravity are presented, allowing a reader to quickly jump into this topic. Early stellar evolution of low-mass stars, cooling models of brown dwarfs and giant gaseous exoplanets as well as internal structure of terrestrial planets are discussed. Moreover, possible test of models of gravity with the use of the discussed objects are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    However the “which one?” is a question which many physicists try to answer.

  2. 2.

    In the further part, we will introduce the rescaled model parameter \(\alpha \) to simplify some expression; see the discussion after (11.12).

  3. 3.

    We have used the relation between the Starobinsky parameter \(\beta \) and rescaled parameter \(\alpha \) again.

  4. 4.

    some massive brown dwarfs do burn hydrogen, however the process is not stable (\(L_{HB}\neq L_{ph}\)) and since although there is some energy production, the object radiates more than produces, therefore it is cooling down and following the BDs’ evolution.

  5. 5.

    https://github.com/mariabenitocst/brown_dwarfs_palatini

  6. 6.

    https://www.esa.int/Science_Exploration/Space_Science/Voyage_2050_sets_sail_ESA_chooses_future_science_mission_themes

  7. 7.

    in the case of larger terrestrial planets we observe a significant difference, making the exoplanet’s composition more difficult to determine [13, 38].

  8. 8.

    https://mars.nasa.gov/insight/spacecraft/instruments/seis/

References

  1. R. Kippenhahn, A. Weigert, A. Weiss, Stellar Structure and Evolution, vol. 192, 2nd edn. (Springer-Verlag, Berlin, 1990)

    Google Scholar 

  2. C.J. Hansen, S.D. Kawaler, V. Trimble, Stellar Interiors: Physical Principles, Structure, and Evolution (Springer Science \(\&\) Business Media, New York, 2012)

    Google Scholar 

  3. P.J. Armitage, Astrophysics of Planet Formation (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  4. P. Irwin, Giant Planets of Our Solar System: Atmospheres, Composition, and Structure (Springer Science \(\&\) Business Media, New York, 2009)

    Google Scholar 

  5. A. De Felice, S. Tsujikawa, Living Rev. Rel. 13, 3 (2010)

    Article  Google Scholar 

  6. A. Wojnar, Eur. Phys. J. C 79(1), 51 (2019)

    Article  ADS  Google Scholar 

  7. A. Sergyeyev, A. Wojnar, Eur. Phys. J. C 80(4), 313 (2020)

    Article  ADS  Google Scholar 

  8. G. Olmo, D. Rubiera-García, A. Wojnar, Phys. Rev. D 100(4), 044020 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Wojnar, Phys. Rev. D 102(12), 124045 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Wojnar, Phys. Rev. D 103(4), 044037 (2021)

    Article  ADS  Google Scholar 

  11. M. Benito, A. Wojnar, Phys. Rev. D 103(6), 064032 (2021)

    Article  ADS  Google Scholar 

  12. A. Kozak, A. Wojnar, Phys. Rev. D 104(8), 084097 (2021)

    Article  ADS  Google Scholar 

  13. A. Kozak, A. Wojnar, Eur. Phys. J. C 81(6), 492 (2021)

    Article  ADS  Google Scholar 

  14. K. Schwarzschild, Nachrichten Göttingen. Math.-phys. Klasse 195, 41–53 (1906)

    Google Scholar 

  15. M. Schwarzschild, Structure and Evolution of Stars (Princeton University Press, Princeton, 2015)

    Google Scholar 

  16. S. Auddy, S. Basu, S.R. Valluri, Adv. Astron. 2016, 574327 (2016)

    Article  Google Scholar 

  17. G. Horedt, Polytropes: Applications in Astrophysics and Related Fields, vol. 306 (Springer Science \(\&\) Business Media, New York, 2004)

    Google Scholar 

  18. K. Koyama, J. Sakstein, Phys. Rev. D 91(12), 124066 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Guerrero, D. Rubiera-García, A. Wojnar, Eur. Phys. J. C 82(8), 707 (2022)

    Article  ADS  Google Scholar 

  20. W.A. Fowler, G.R. Caughlan, B.A. Zimmerman, Annu. Rev. Astron. Astrophys. 13, 69 (1975)

    Article  ADS  Google Scholar 

  21. T.W.A. Müller, W. Kley, Astron. Astrophys. 539, A18 (2012)

    Article  ADS  Google Scholar 

  22. C. Hayashi, Publ. Astron. Soc. Jpn. 13, 450 (1961)

    ADS  Google Scholar 

  23. C. Bertout, Ann. Rev. Astron. Astrophys. 27, 351 (1989)

    Article  ADS  Google Scholar 

  24. G. Ushomirsky, et al., Astrophys. J. 497(1), 253 (1998)

    Article  ADS  Google Scholar 

  25. G.R. Caughlan, W.A. Fowler, At. Data Nucl. Data Tables 40, 283 (1998)

    Article  Google Scholar 

  26. G. Raimann, Z. Phys. A Hadrons Nucl. 347(1), 73–74 (1993)

    Article  Google Scholar 

  27. A. Burrows, J. Liebert, Rev. Mod. Phys. 65, 301 (1993)

    Article  ADS  Google Scholar 

  28. L. Henyey, R. Lelevier, R.D. Levee, Publ. Astron. Soc. Pac. 67, 154, 396 (1955)

    Google Scholar 

  29. L. Henyey, J.E. Forbes, N.L. Gould, Astrophys. J. 139, 306 (1964)

    Article  ADS  Google Scholar 

  30. L. Henyey, M.S. Vardya, P. Bodenheimer, Astrophys. J. 142, 841 (1965)

    Article  ADS  Google Scholar 

  31. G. Chabrier, et al., Astrophys. J. 391, 817–826 (1992)

    Article  ADS  Google Scholar 

  32. D.J. Stevenson, Ann. Rev. Astron. Astrophys. 29(1), 163–193 (1991)

    Article  ADS  Google Scholar 

  33. R. Butler, S. Tsuboi, Phys. Earth Planet. Inter. 321, 106802 (2021)

    Article  Google Scholar 

  34. S. Merkel, et al., Phys. Rev. Lett. 127(20), 205501 (2021)

    Article  ADS  Google Scholar 

  35. A. Donini, S. Palomares-Ruiz, J. Salvado, Nature Phys. 15(1), 37–40 (2019)

    Article  ADS  Google Scholar 

  36. A. Wojnar, Phys. Rev. D 104(10), 104058 (2021)

    Article  ADS  Google Scholar 

  37. J.R. Donnison, I.P. Williams, Astrophys. Space Sci. 29(2), 387–396 (1974)

    Article  ADS  Google Scholar 

  38. S. Seager et al., Astrophys. J. 669, 1279 (2007)

    Article  ADS  Google Scholar 

  39. A. Kozak, A. Wojnar, Int. J. Geom. Meth. Mod. Phys. 19(Suppl. 01), 2250157 (2022)

    Article  Google Scholar 

  40. A. Kozak, A. Wojnar, Universe 8(1), 3 (2021)

    Article  ADS  Google Scholar 

  41. A.M. Dziewonski, D.L. Anderson, Phys. Earth Planet. Inter. 25(4), 297–356 (1981)

    Article  ADS  Google Scholar 

  42. B. Kustowski, et al., J. Geophys. Res. Solid Earth 113(B6) (2008)

    Google Scholar 

  43. B.L.N. Kennett, E.R. Engdahl, Geophys. J. Int. 105(2), 429–465 (1991)

    Article  ADS  Google Scholar 

  44. B.L.N. Kennett, E.R. Engdahl, R. Buland, Geophys. J. Int. 122(1), 108–124 (1995)

    Article  ADS  Google Scholar 

  45. W.M. Kaula, An Introduction to Planetary Physics: The Terrestrial Planets (Wiley, New York, 1968)

    Google Scholar 

  46. J.G. Williams, Astron. J. 108, 711 (1994)

    Article  ADS  Google Scholar 

  47. A.S. Konopliv, W.L. Sjogren, Publication 95–3 (Jet Propulsion Laboratory/California Institute of Technology, Pasadena, 1995)

    Google Scholar 

  48. D.E. Smith, et al., J. Geophys. Res. 98, 20871 (1995)

    Article  ADS  Google Scholar 

  49. W.M. Folkner, et al., J. Geophys. Res. 102, 4057 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the EU through the European Regional Development Fund CoE program TK133 “The Dark Side of the Universe”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Wojnar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wojnar, A. (2023). Stellar and Substellar Objects in Modified Gravity. In: Pfeifer, C., Lämmerzahl, C. (eds) Modified and Quantum Gravity. Lecture Notes in Physics, vol 1017. Springer, Cham. https://doi.org/10.1007/978-3-031-31520-6_11

Download citation

Publish with us

Policies and ethics