Skip to main content

Exercising Digitally: A Multi-Perspective Analysis of Exergames for Physical Activity and Health Promotion

  • Chapter
  • First Online:
Creating Digitally

Abstract

Exergames are often considered an intriguing opportunity for promoting physical activity (PA) among various target groups. However, due to the large number of diverse products currently available under the term “exergames”, it is not appropriate to label exergames per se as promising tools for addressing physical inactivity. In this chapter, the authors aim to analyze current exergaming products from different perspectives to identify their strengths, weaknesses, potentials, and risks for PA and health promotion. Furthermore, this chapter provides a stimulus for thought, inspiration, and suggestions for researchers, game designers, and publishers dedicated to exergaming. It also gives a broad overview of the history of exergames, focusing on the publishers’ influence on product development and targeting (“gamification” versus “sportification”). Furthermore, the authors aim to provide a structured approach to clustering exergames based on the platforms or devices required to play them. Considering the current literature findings, the authors go on to summarize the physical, psychological, and cognitive effects of exergames and discuss the potential and limitations of current products regarding PA and health promotion. Subsequently, they provide research-based recommendations on what to consider when developing exergames by giving insight into a specific case. The work concludes with some possible future directions and an excursion into the metaverse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allender, S., Cowburn, G., Foster, C.: Understanding participation in sport and physical activity among children and adults: a review of qualitative studies. Health Educ. Res. 21, 826–835 (2006). https://doi.org/10.1093/her/cyl063

    Article  Google Scholar 

  2. Ameryoun, A., Sanaeinasab, H., Saffari, M., Koenig, H.G.: Impact of game-based health promotion programs on body mass index in overweight/obese children and adolescents: a systematic review and meta-analysis of randomized controlled trials. Child. Obes. 14, 67–80 (2018). https://doi.org/10.1089/chi.2017.0250

    Article  Google Scholar 

  3. Atari Compendium: ATARI VCS/2600 Unreleased/Prototype Games and Hardware: PUFFER (2022). http://www.ataricompendium.com/game_library/unreleased/unreleased.html#puffer. Accessed 21 July 2022

  4. Atarimania: Video Reflex (2022). http://www.atarimania.com/game-atari-2600-vcs-video-reflex_8414.html. Accessed 21 July 2022

  5. Ballesteros, S., Voelcker-Rehage, C., Bherer, L.: Editorial: cognitive and brain plasticity induced by physical exercise, cognitive training, video games, and combined interventions. Front. Hum. Neurosci. 12, 1–7 (2018). https://doi.org/10.3389/fnhum.2018.00169

    Article  Google Scholar 

  6. Baranowski, T., Maddison, R., Maloney, A., Medina, E., Simons, M.: Building a better mousetrap (exergame) to increase youth physical activity. Games Health J. 3, 72–78 (2014). https://doi.org/10.1089/g4h.2014.0018

    Article  Google Scholar 

  7. Barnett, L.M., Hinkley, T., Okely, A.D., Hesketh, K., Salmon, J.: Use of electronic games by young children and fundamental movement skills? Percept. Mot. Skills. 114, 1023–1034 (2012). https://doi.org/10.2466/10.13.PMS.114.3.1023-1034

    Article  Google Scholar 

  8. Bartley, C.A., Hay, M., Bloch, M.H.: Meta-analysis: aerobic exercise for the treatment of anxiety disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 45, 34–39 (2013). https://doi.org/10.1016/j.pnpbp.2013.04.016

    Article  Google Scholar 

  9. Bell, A.C., Ge, K., Popkin, B.M.: The road to obesity or the path to prevention: Motorized transportation and obesity in China. Obes. Res. 10, 277–283 (2002). https://doi.org/10.1038/oby.2002.38

    Article  Google Scholar 

  10. Benzing, V., Heinks, T., Eggenberger, N., Schmidt, M.: Acute cognitively engaging exergame-based physical activity enhances executive functions in adolescents. PLoS ONE 11, 1–15 (2016). https://doi.org/10.1371/journal.pone.0167501

    Article  Google Scholar 

  11. Best, J.R., Nagamatsu, L.S., Liu-Ambrose, T.: Improvements to executive function during exercise training predict maintenance of physical activity over the following year. Front. Hum. Neurosci. 8, 1–9 (2014). https://doi.org/10.3389/fnhum.2014.00353

    Article  Google Scholar 

  12. Bherer, L., Erickson, K.I., Liu-Ambrose, T.: Physical exercise and brain functions in older adults. J. Aging Res. 2013, (2013). https://doi.org/10.1155/2013/197326

  13. Bickmore, T.W.: Establishing and maintaining long-term human-computer relationships. ACM Trans. Comput. Interact. 12, 293–327 (2005)

    Article  Google Scholar 

  14. Biddiss, E., Irwin, J.: Active video games to promote physical activity in children and youth: a systematic review. Arch. Pediatr. Adolesc. Med. 164, 664–672 (2010). https://doi.org/10.1001/archpediatrics.2010.104

    Article  Google Scholar 

  15. Bieryla, K.A., Dold, N.M.: Feasibility of Wii Fit training to improve clinical measures of balance in older adults. Clin. Interv. Aging. 8, 775–781 (2013). https://doi.org/10.2147/CIA.S46164

    Article  Google Scholar 

  16. Bogost, I.: The Rhetoric of Exergaming (2005). http://bogost.com/downloads/i.%20boogst%20the%20rhetoric%20of%20exergaming.pdf. Accessed 21 July 2022

  17. Bolsø, E.I.: Big book of amiga hardware. Misk Hardware/Amiga Corp: Joyboard (2004). https://bigbookofamigahardware.com/bboah/product.aspx?id=716. Accessed 21 July 2022

  18. Bosch, P.R., Poloni, J., Thornton, A., Lynskey, J.V.: The heart rate response to Nintendo Wii boxing in young adults. Cardiopulm. Phys. Ther. J. 23, 13–18 (2012). https://doi.org/10.1097/01823246-201223020-00003

    Article  Google Scholar 

  19. Burke, J.W., McNeill, M.D.J., Charles, D.K., Morrow, P.J., Crosbie, J.H., McDonough, S.M.: Optimising engagement for stroke rehabilitation using serious games. Vis. Comput. 25, 1085–1099 (2009). https://doi.org/10.1007/s00371-009-0387-4

    Article  Google Scholar 

  20. Byrne, A.M., Kim, M.: The exergame as a tool for mental health treatment. J. Creat. Ment. Heal. 14, 465–477 (2019). https://doi.org/10.1080/15401383.2019.1627263

    Article  Google Scholar 

  21. Callaghan, P.: Exercise: a neglected intervention in mental health care? J. Psychiatr. Ment. Health Nurs. 11, 476–483 (2004). https://doi.org/10.1111/j.1365-2850.2004.00751.x

    Article  Google Scholar 

  22. Caspersen, C.J., Powell, K.E., Christenson, G.M.: Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research CARL. Public Health Rep. 100, 126 (1985). https://doi.org/10.1093/nq/s9-IX.228.365-f

    Article  Google Scholar 

  23. Chaput, J.P., LeBlanc, A.G., McFarlane, A., Colley, R.C., Thivel, D., Biddle, S.J.H., Maddison, R., Leatherdale, S.T., Tremblay, M.S.: Active healthy kids Canada’s position on active video games for children and youth. Paediatr Child Heal. 18, 529–532 (2013)

    Article  Google Scholar 

  24. Cooney, G., Dwan, K., Mead, G.: Exercise for depression. JAMA - J. Am. Med. Assoc. 311, 2432–2433 (2014). https://doi.org/10.1001/jama.2014.4930

    Article  Google Scholar 

  25. Cuijpers, P., Muñoz, R.F., Clarke, G.N., Lewinsohn, P.M.: Psychoeducational treatment and prevention of depression: the “coping with depression” course thirty years later. Clin. Psychol. Rev. 29, 449–458 (2009). https://doi.org/10.1016/j.cpr.2009.04.005

    Article  Google Scholar 

  26. Czerwonka, S., Alvarez, A., McArthur, V.: One ring fit to rule them all? An analysis of avatar bodies and customization in exergames. Front. Psychol. 12, (2021). https://doi.org/10.3389/fpsyg.2021.695258

  27. Deutsch, J.E., Brettler, A., Smith, C., Welsh, J., John, R., Guarrera-Bowlby, P., Kafri, M.: Nintendo Wii sports and Wii fit game analysis, validation, and application to stroke rehabilitation. Top. Stroke Rehabil. 18, 701–719 (2011). https://doi.org/10.1310/tsr1806-701

    Article  Google Scholar 

  28. Dickinson, K., Place, M.: A randomised control trial of the impact of a computer-based activity programme upon the fitness of children with autism. Autism Res. Treat. 2014, 1–9 (2014). https://doi.org/10.1155/2014/419653

    Article  Google Scholar 

  29. Ding, D., Lawson, K.D., Kolbe-Alexander, T.L., Finkelstein, E.A., Katzmarzyk, P.T., van Mechelen, W., Pratt, M.: The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet 388, 1311–1324 (2016). https://doi.org/10.1016/S0140-6736(16)30383-X

    Article  Google Scholar 

  30. Dishman, R.K., Motl, R.W., Saunders, R., Felton, G., Ward, D.S., Dowda, M., Pate, R.R.: Enjoyment mediates effects of a school-based physical-activity intervention. Med. Sci. Sports Exerc. 37, 478–487 (2005). https://doi.org/10.1249/01.MSS.0000155391.62733.A7

    Article  Google Scholar 

  31. Duque, G., Boersma, D., Loza-Diaz, G., Hassan, S., Suarez, H., Geisinger, D., Suriyaarachchi, P., Sharma, A., Demontiero, O.: Effects of balance training using a virtual-reality system in older fallers. Clin. Interv. Aging. 8, 257–263 (2013). https://doi.org/10.2147/CIA.S41453

    Article  Google Scholar 

  32. Dutta, N., Pereira, M.A.: Effects of Active Video Games on Energy Expenditure in Adults: A Systematic Literature Review (2015). https://journals.humankinetics.com/view/journals/jpah/12/6/article-p890.xml

  33. Egger, F., Benzing, V., Conzelmann, A., Schmidt, M.: Boost your brain, while having a break! The effects of long-term cognitively engaging physical activity breaks on children’s executive functions and academic achievement. PLoS ONE 14, 1–20 (2019). https://doi.org/10.1371/journal.pone.0212482

    Article  Google Scholar 

  34. Ekelund, U., Steene-Johannessen, J., Brown, W.J., Fagerland, M.W., Owen, N., Powell, K.E., Bauman, A., Lee, I.M., Ding, D., Heath, G., Hallal, P.C., Kohl, H.W., Pratt, M., Reis, R., Sallis, J., Aadahl, M., Blot, W.J., Chey, T., Deka, A., Dunstan, D., Ford, E.S., Færch, K., Inoue, M., Katzmarzyk, P.T., Keadle, S.K., Matthews, C.E., Martinez, D., Patel, A.V., Pavey, T., Petersen, C.B., Van Der Ploeg, H., Rangul, V., Sethi, P., Sund, E.R., Westgate, K., Wijndaele, K., Yi-Park, S.: Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 388, 1302–1310 (2016). https://doi.org/10.1016/S0140-6736(16)30370-1

    Article  Google Scholar 

  35. Ensari, I., Motl, R.W., Pilutti, L.A.: Exercise training improves depressive symptoms in people with multiple sclerosis: results of a meta-analysis. J. Psychosom. Res. 76, 465–471 (2014). https://doi.org/10.1016/j.jpsychores.2014.03.014

    Article  Google Scholar 

  36. Fang, Q., Ghanouni, P., Anderson, S.E., Touchett, H., Shirley, R., Fang, F., Fang, C.: Effects of exergaming on balance of healthy older adults: a systematic review and meta-analysis of randomized controlled trials. Games Health J. 9, 11–23 (2020). https://doi.org/10.1089/g4h.2019.0016

    Article  Google Scholar 

  37. Farrow, M., Lutteroth, C., Rouse, P.C., Bilzon, J.L.J.: Virtual-reality exergaming improves performance during high-intensity interval training. Eur. J. Sport Sci. 19, 719–727 (2019). https://doi.org/10.1080/17461391.2018.1542459

    Article  Google Scholar 

  38. Feltz, D.L., Forlenza, S.T., Winn, B., Kerr, N.L.: Cyber buddy is better than no buddy: a test of the Köhler motivation effect in exergames. Games Health J. 3, 98–105 (2014). https://doi.org/10.1089/g4h.2013.0088

    Article  Google Scholar 

  39. Ferguson, B.: Games for wellness—impacting the lives of employees and the profits of employers. Games Health J. 1, 177–179 (2012). https://doi.org/10.1089/g4h.2012.0023

    Article  Google Scholar 

  40. Finco, M.D., Maass, R.W.: The history of exergames: promotion of exercise and active living through body interaction. In: SeGAH 2014—IEEE 3rd International Conference on Serious Games Appl. Heal. Books Proc. 1–6 (2014). https://doi.org/10.1109/SeGAH.2014.7067100

  41. Fox, K.R.: The influence of physical activity on mental well-being. Public Health Nutr. 2, 411–418 (1999). https://doi.org/10.1017/S1368980099000567

  42. Frank, A.: Pokémon Go Players Have Walked Enough to Circle the Earth 200,000 Times (2016). https://www.polygon.com/2016/12/20/14027410/pokemon-go-player-stats-distance-traveled-pokemon-caught#:~:text=As%20of%20Dec.,200%2C000%20trips%20around%20the%20Earth. Accessed 21 July 2022

  43. Gao, Z., Hannan, P., Xiang, P., Stodden, D.F., Valdez, V.E.: Video game-based exercise, Latino children’s physical health, and academic achievement. Am. J. Prev. Med. 44, S240–S246 (2013). https://doi.org/10.1016/j.amepre.2012.11.023

    Article  Google Scholar 

  44. Goldberg, M., Caron, L., Lida, K.: Atari gaming headquarters. Project puffer page. Atari gaming headquarters—Atari Project Puffer Page (atarihq.com) (2012a). Accessed 21 July 2022

    Google Scholar 

  45. Goldberg, M., Caron, L., Lida, K.: Atari gaming headquarters. SUNCOM AEROBICS JOYSTICK. AGH Museum—Suncom Aerobics Joystick (atarihq.com) (2012b). Accessed 21 July 2022

    Google Scholar 

  46. Goldberg, M., Caron, L., Lida, K.: Atari gaming headquarters. In: FOOT CRAZ CONTROLLER BY EXUS. AGH Museum—Foot Craz Controller by Exus (atarihq.com) (2012c). Accessed 21 July 2022

    Google Scholar 

  47. Gomez-Pinilla, F., Hillman, C.: The influence of exercise on cognitive abilities. Compr. Physiol. 3, 403–428 (2013). https://doi.org/10.1002/cphy.c110063

    Article  Google Scholar 

  48. González, C.S.G., Adelantado, V.N.: A structural theoretical framework based on motor play to categorize and analyze active video games. Games Cult. 11, 690–719 (2016). https://doi.org/10.1177/1555412015576613

    Article  Google Scholar 

  49. Grasser, A., Chipman, P., Leeming, F., Biedenbach, S.: Deep learning and emotion in serious games. In: Ritterfeld, U., Cody, M., Vorderer, P. (eds.) Serious Games, Mechanisms and Effects. Routledge, New York and London (2009)

    Google Scholar 

  50. Graves, L.E.F., Ridgers, N.D., Stratton, G.: The contribution of upper limb and total body movement to adolescents’ energy expenditure whilst playing Nintendo Wii. Eur. J. Appl. Physiol. 104, 617–623 (2008). https://doi.org/10.1007/s00421-008-0813-8

    Article  Google Scholar 

  51. Graves, L.E.F., Ridgers, N.D., Williams, K., Stratton, G., Atkinson, G., Cable, N.T.: The physiological cost and enjoyment of Wii fit in adolescents, young adults, and older adults. J. Phys. Act. Heal. 7, 393–401 (2010). https://doi.org/10.1123/jpah.7.3.393

    Article  Google Scholar 

  52. Griffin, M., McCormick, D., Taylor, M.: Using the Nintendo Wii as an intervention in a falls prevention group. J Am Geriatr Soc. 60, 385–387 (2012)

    Article  Google Scholar 

  53. Guthold, R., Stevens, G.A., Riley, L.M., Bull, F.C.: Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob. Heal. 6, e1077–e1086 (2018). https://doi.org/10.1016/S2214-109X(18)30357-7

    Article  Google Scholar 

  54. Hansen, L.: The evolution of fitness: exergaming defined. The Evolution of Fitness: Exergaming Defined (clubsolutionsmagazine.com) (2007). Accessed 21 July 2022

    Google Scholar 

  55. Hillman, C.H., Erickson, K.I., Kramer, A.F.: Be smart, exercise your heart: exercise effects on brain and cognition. Nature 9, 58–65 (2008)

    Google Scholar 

  56. Jo, E.A., Wu, S.S., Han, H.R., Park, J.J., Park, S., Cho, K.I.: Effects of exergaming in postmenopausal women with high cardiovascular risk: a randomized controlled trial. Clin. Cardiol. 43, 363–370 (2020). https://doi.org/10.1002/clc.23324

    Article  Google Scholar 

  57. Jordan, M., Donne, B., Fletcher, D.: Only lower limb controlled interactive computer gaming enables an effective increase in energy expenditure. Eur. J. Appl. Physiol. 111, 1465–1472 (2011). https://doi.org/10.1007/s00421-010-1773-3

    Article  Google Scholar 

  58. Jorgensen, M.G., Laessoe, U., Hendriksen, C., Nielsen, O.B.F., Aagaard, P.: Efficacy of nintendo wii training on mechanical leg muscle function and postural balance in community-dwelling older adults: a randomized controlled trial. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 68, 845–852 (2013). https://doi.org/10.1093/gerona/gls222

  59. Joronen, K., Aikasalo, A., Suvitie, A.: Nonphysical effects of exergames on child and adolescent well-being: a comprehensive systematic review. Scand. J. Caring Sci. 31, 449–461 (2017). https://doi.org/10.1111/scs.12393

    Article  Google Scholar 

  60. Kain, E.: ‘Pokémon GO’ Is The Biggest Mobile Game In US History—And It’s About To Top Snapchat (2016). https://www.forbes.com/sites/erikkain/2016/07/13/pokemon-go-is-the-biggest-mobile-game-in-us-history-and-its-about-to-top-snapchat/. Accessed 21 July 2022

  61. Kamel Boulos, M.N.: Xbox 360 Kinect exergames for health. Games Health J. 1, 326–330 (2012). https://doi.org/10.1089/g4h.2012.0041

    Article  Google Scholar 

  62. Kamel Boulos, M.N., Viangteeravat, T., Anyanwu, M.N., Ra Nagisetty, V., Kuscu, E.: Web GIS in practice IX: a demonstration of geospatial visual analytics using Microsoft Live Labs Pivot technology and WHO mortality data. Int. J. Health Geogr. 10, 1–14 (2011). https://doi.org/10.1186/1476-072X-10-19

    Article  Google Scholar 

  63. Kappen, D.L., Mirza-Babaei, P., Nacke, L.E.: Older adults’ physical activity and exergames: a systematic review. Int. J. Hum. Comput. Interact. 35, 140–167 (2019). https://doi.org/10.1080/10447318.2018.1441253

    Article  Google Scholar 

  64. Kari, T.: Can exergaming promote physical fitness and physical activity?: A systematic review of systematic reviews. Int. J. Gaming Comput. Simulations. 6, 59–77 (2014)

    Article  Google Scholar 

  65. Kari, T.: Promoting physical activity and fitness with exergames: Updated systematic review of systematic reviews. In: Dubbels, B. (ed.) Transforming Gaming and Computer Simulation Technologies across Industries, pp. 225–245. IGI Global (2016)

    Google Scholar 

  66. Katzmarzyk, P.T., Church, T.S., Craig, C.L., Bouchard, C.: Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med. Sci. Sports Exerc. 41, 998–1005 (2009). https://doi.org/10.1249/MSS.0b013e3181930355

    Article  Google Scholar 

  67. Ketelhut, S., Ketelhut, R.G.: Type of Exercise Training and Training Methods (2020)

    Google Scholar 

  68. Ketelhut, S., Ketelhut, R.G., Kircher, E., Röglin, L., Hottenrott, K., Martin-Niedecken, A.L., Ketelhut, K.: Gaming instead of training? Exergaming Induces high-intensity exercise stimulus and reduces cardiovascular reactivity to cold pressor test. Front. Cardiovasc. Med. 9, 1–10 (2022). https://doi.org/10.3389/fcvm.2022.798149

  69. Ketelhut, S., Röglin, L., Kircher, E., Martin-Niedecken, A.L., Ketelhut, R., Hottenrott, K., Ketelhut, K.: The new way to exercise? Evaluating an innovative heart-rate-controlled exergame. Int. J. Sports Med. 43, 77–82 (2022). https://doi.org/10.1055/a-1520-4742

  70. Ketelhut, S., Röglin, L., Martin-Niedecken, A.L., Nigg, C.R., Ketelhut, K.: Integrating regular exergaming sessions in the exercube into a school setting increases physical fitness in elementary school children: a randomized controlled trial. J. Clin. Med. 11, (2022). https://doi.org/10.3390/jcm11061570

  71. Kircher, E., Ketelhut, S., Ketelhut, K., Röglin, L., Hottenrott, K., Martin-niedecken, A.L., Ketelhut, R.G.: A game-based approach to lower blood pressure ? Comparing acute hemodynamic responses to endurance exercise and exergaming : a randomized crossover trial. Int. J. Environ. Res. Public Health. 19, (2022)

    Google Scholar 

  72. Kircher, E., Ketelhut, S., Ketelhut, K., Röglin, L., Martin-Niedecken, A.L., Hottenrott, K., Ketelhut, R.G.: Acute effects of heart rate-controlled exergaming on vascular function in young adults. Games Health J. 11, 58–66 (2022). https://doi.org/10.1089/g4h.2021.0196

  73. Klein, M.J., Simmers, C.S.: Exergaming: virtual inspiration, real perspiration. Young Consum. 10, 35–45 (2009). https://doi.org/10.1108/17473610910940774

  74. Laufer, Y., Dar, G., Kodesh, E.: Does a Wii-based exercise program enhance balance control of independently functioning older adults? A systematic review. Clin. Interv. Aging. 9, 1803–1813 (2014). https://doi.org/10.2147/CIA.S69673

    Article  Google Scholar 

  75. LeBlanc, A.G., Chaput, J.P., McFarlane, A., Colley, R.C., Thivel, D., Biddle, S.J.H., Maddison, R., Leatherdale, S.T., Tremblay, M.S.: Active video games and health indicators in children and youth: a systematic review. PLoS One. 8 (2013). https://doi.org/10.1371/journal.pone.0065351

  76. Lee, I.M., Shiroma, E.J., Lobelo, F., Puska, P., Blair, S.N., Katzmarzyk, P.T., Alkandari, J.R., Andersen, L.B., Bauman, A.E., Brownson, R.C., Bull, F.C., Craig, C.L., Ekelund, U., Goenka, S., Guthold, R., Hallal, P.C., Haskell, W.L., Heath, G.W., Inoue, S., Kahlmeier, S., Kohl, H.W., Lambert, E.V., Leetongin, G., Loos, R.J.F., Marcus, B., Martin, B.W., Owen, N., Parra, D.C., Pratt, M., Ogilvie, D., Reis, R.S., Sallis, J.F., Sarmiento, O.L., Wells, J.C.: Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380, 219–229 (2012). https://doi.org/10.1016/S0140-6736(12)61031-9

    Article  Google Scholar 

  77. Lee, S., Kim, W., Park, T., Peng, W.: The psychological effects of playing exergames: a systematic review. Cyberpsychol. Behav. Soc. Netw. 20, 513–532 (2017). https://doi.org/10.1089/cyber.2017.0183

  78. Lewis, B.A., Williams, D.M., Frayeh, A., Marcus, B.H.: Self-efficacy versus perceived enjoyment as predictors of physical activity behaviour. Psychol. Heal. 31, 456–469 (2016). https://doi.org/10.1080/08870446.2015.1111372

    Article  Google Scholar 

  79. Li, J., Theng, Y.L., Foo, S.: Effect of exergames on depression: a systematic review and meta-analysis. Cyberpsychol. Behav. Soc. Netw. 19, 34–42 (2016). https://doi.org/10.1089/cyber.2015.0366

  80. Liu, W., Zeng, N., McDonough, D.J., Gao, Z.: Effect of active video games on healthy children’s fundamental motor skills and physical fitness: a systematic review. Int. J. Environ. Res. Public Health. 17, 1–17 (2020). https://doi.org/10.3390/ijerph17218264

    Article  Google Scholar 

  81. Löllgen, H.: Gesundheit, bewegung und körperliche aktivität. Dtsch. Z. Sportmed. 66, 139–140 (2015). https://doi.org/10.5960/dzsm.2015.184

    Article  Google Scholar 

  82. Lu, A.S., Kharrazi, H., Gharghabi, F., Thompson, D.: A systematic review of health videogames on childhood obesity prevention and intervention. Games Health J. 2, 131–141 (2013). https://doi.org/10.1089/g4h.2013.0025

    Article  Google Scholar 

  83. Lyons, E.J.: Cultivating engagement and enjoyment in exergames using feedback, challenge, and rewards. Games Health J. 4, 12–18 (2015). https://doi.org/10.1089/g4h.2014.0072

    Article  Google Scholar 

  84. Lyons, E.J., Tate, D.F., Ward, D.S., Bowling, J.M., Ribisl, K.M., Kalyararaman, S.: Energy expenditure and enjoyment during video game play: differences by game type. Med. Sci. Sports Exerc. 43, 1987–1993 (2011). https://doi.org/10.1249/MSS.0b013e318216ebf3

    Article  Google Scholar 

  85. Mackintosh, K.A., Standage, M., Staiano, A.E., Lester, L., McNarry, M.A.: Investigating the physiological and psychosocial responses of single- and dual-player exergaming in young adults. Games Health J. 5, 375–381 (2016). https://doi.org/10.1089/g4h.2016.0015

    Article  Google Scholar 

  86. Macvean, A., Robertson, J.: Understanding exergame users’ physical activity, motivation and behavior over time. Conf. Hum. Factors Comput. Syst. - Proc. 1251–1260 (2013). https://doi.org/10.1145/2470654.2466163

  87. Maddison, R., Ni Mhurchu, C., Jull, A., Jiang, Y., Prapavessis, H., Rodgers, A.: Energy expended playing video console games: an opportunity to increase children’s physical activity? Pediatr. Exerc. Sci. 19, 334–343 (2007). https://doi.org/10.1123/pes.19.3.334

    Article  Google Scholar 

  88. Marston, H.R., Freeman, S., Bishop, K.A., Beech, C.L.: A scoping review of digital gaming research involving older adults aged 85 and older. Games Health J. 5, 157–174 (2016). https://doi.org/10.1089/g4h.2015.0087

    Article  Google Scholar 

  89. Martin-Niedecken, A.L., Schättin, A.: Let the Body’n’Brain games begin: toward innovative training approaches in eSports athletes. Front. Psychol. 11, 1–9 (2020). https://doi.org/10.3389/fpsyg.2020.00138

    Article  Google Scholar 

  90. Martin-Niedecken, A.L., Rogers, K., Vidal, L.T., Mekler, E.D., Segura, E.M.: Exercube vs. Personal trainer: evaluating a holistic, immersive, and adaptive fitness game setup. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. pp. 1–15. CHI, Glasgow, Scotland (2019)

    Google Scholar 

  91. Martin-Niedecken, A.L.: Towards balancing fun and exertion in exergames: exploring the impact of movement-based controller devices, exercise concepts, game adaptivity and player modes on player experience and training intensity in different exergame settings. Ph.D. Thesis. Technische Universität Darmstadt (2021). https://doi.org/10.26083/tuprints-00014186

  92. Martin-Niedecken, A.L., Götz, U.: Go with the dual flow: evaluating the psychophysiological adaptive fitness game environment “Plunder Planet”. In: Alcañiz, M., Göbel, S., Ma, M., Fradinho Oliveira, M., Baalsrud Hauge, J., Marsh, T. (eds) Serious Games. JCSG 2017. Lecture Notes in Computer Science, vol. 10622. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70111-0_4

  93. Martin-Niedecken, A.L., Mahrer, A., Rogers, K., de Bruin, E.D., Schättin, A.: “HIIT” the ExerCube: comparing the effectiveness of functional high-intensity interval training in conventional vs. exergame-based training. Front. Comput. Sci. 2 (2020). https://doi.org/10.3389/fcomp.2020.00033

  94. Martin-Niedecken, A.L., Mekler, E.D.: The ExerCube: participatory design of an immersive fitness game environment. In: Göbel, S., et al. (eds) Serious Games. JCSG 2018. Lecture Notes in Computer Science, vol. 11243. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02762-9_28

  95. Martin-Niedecken, A.L., Rogers, K., Turmo Vidal, L., Mekler, E.D., Márquez Segura, E.: ExerCube vs. personal trainer: evaluating a holistic, immersive, and adaptive fitness game setup. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). Association for Computing Machinery, New York, NY, USA, Paper 88, 1–15 (2019). https://doi.org/10.1145/3290605.3300318

  96. Martin-Niedecken, A.L., Schwarz, T., Schättin, A.: Comparing the impact of heart rate-based in-game adaptations in an exergame-based functional high-intensity interval training on training intensity and experience in healthy young adults. Front. Psychol. 12 (2021). https://doi.org/10.3389/fpsyg.2021.572877

  97. Martin-Niedecken, A.L., Segura, E.M., Rogers, K., Niedecken, S., Vidal, L.T.: Towards socially immersive fitness games: an exploratory evaluation through embodied sketching. CHI Play 2019 Ext. Abstr. Annu. Symp. Comput. Interact. Play. 525–534 (2019). https://doi.org/10.1145/3341215.3356293

  98. Mathieu, R.A., Powell-Wiley, T.M., Ayers, C.R., McGuire, D.K., Khera, A., Das, S.R., Lakoski, S.G.: Physical activity participation, health perceptions, and CVD mortality in a multi-ethnic population: the Dallas heart study Reese. Am Hear. J. 163, 1037–1040 (2012). https://doi.org/10.1016/j.ahj.2012.03.005.Physical

    Article  Google Scholar 

  99. Matthews, C.E., Moore, S.C., Sampson, J., Blair, A., Xiao, Q., Keadle, S.K., Hollenbeck, A., Park, Y.: Mortality benefits for replacing sitting time with different physical activities. Med. Sci. Sports Exerc. 47, 1833–1840 (2015). https://doi.org/10.1249/MSS.0000000000000621

    Article  Google Scholar 

  100. McBain, T., Weston, M., Crawshaw, P., Haighton, C., Spears, I.: Development of an exergame to deliver a sustained dose of high-intensity training: Formative pilot randomized trial. J. Med. Internet Res. 20 (2018). https://doi.org/10.2196/games.7758

  101. McGuire, A.M., Anderson, D.J., Fulbrook, P.: Perceived barriers to healthy lifestyle activities in midlife and older Australian women with type 2 diabetes. Collegian 21, 301–310 (2014). https://doi.org/10.1016/j.colegn.2013.07.001

    Article  Google Scholar 

  102. Mejia-Downs, A., Fruth, S.J., Clifford, A., Hine, S., Huckstep, J., Merkel, H., Wilkinson, H., Yoder, J.: A preliminary exploration of the effects of a 6-week interactive video dance exercise program in an adult population. Cardiopulm. Phys. Ther. J. 22, 5–11 (2011). https://doi.org/10.1097/01823246-201122040-00002

    Article  Google Scholar 

  103. Mills, A., Rosenberg, M., Stratton, G., Carter, H.H., Spence, A.L., Pugh, C.J.A., Green, D.J., Naylor, L.H.: The effect of exergaming on vascular function in children. J. Pediatr. 163, 806–810 (2013). https://doi.org/10.1016/j.jpeds.2013.03.076

    Article  Google Scholar 

  104. Monda, K.L., Adair, L.S., Zhai, F., Popkin, B.M.: Longitudinal relationships between occupational and domestic physical activity patterns and body weight in China. Eur. J. Clin. Nutr. 62, 1318–1325 (2008). https://doi.org/10.1038/sj.ejcn.1602849

    Article  Google Scholar 

  105. Monedero, J., McDonnell, A.C., Keoghan, M., O’Gorman, D.J.: Modified active videogame play results in moderate-intensity exercise. Games Health J. 3, 234–240 (2014). https://doi.org/10.1089/g4h.2013.0096

    Article  Google Scholar 

  106. Monedero, J., Murphy, E.E., O’Gorman, D.J.: Energy expenditure and affect responses to different types of active video game and exercise. PLoS ONE 12, 1–13 (2017). https://doi.org/10.1371/journal.pone.0176213

    Article  Google Scholar 

  107. Mura, G., Carta, M.G., Sancassiani, F., Machado, S., Prosperini, L.: Active exergames to improve cognitive functioning in neurological disabilities: a systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 54, 450–462 (2018). https://doi.org/10.23736/S1973-9087.17.04680-9

  108. Murray, J.H.: Hamlet on the Holodeck: The Future of Narrative in Cyberspace. The Free Press, New York (1997)

    Google Scholar 

  109. Nass, C., Moon, Y., Carney, P.: Are people polite to computers? Responses to computer-based interviewing systems. J. Appl. Soc. Psychol. 29, 1093–1109 (1999). https://doi.org/10.1111/j.1559-1816.1999.tb00142.x

    Article  Google Scholar 

  110. O’Donovan, C., Hirsch, E., Holohan, E., McBride, I., McManus, R., Hussey, J.: Energy expended playing Xbox KinectTM And WiiTM games: a preliminary study comparing single and multiplayer modes. Physiother. (United Kingdom) 98, 224–229 (2012). https://doi.org/10.1016/j.physio.2012.05.010

    Article  Google Scholar 

  111. O’Loughlin, E.K., Dutczak, H., Kakinami, L., Consalvo, M., McGrath, J.J., Barnett, T.A.: Exergaming in youth and young adults: a narrative overview. Games Health J. 9, 314–338 (2020). https://doi.org/10.1089/g4h.2019.0008

    Article  Google Scholar 

  112. Oesch, P., Kool, J., Fernandez-Luque, L., Brox, E., Evertsen, G., Civit, A., Hilfiker, R., Bachmann, S.: Exergames versus self-regulated exercises with instruction leaflets to improve adherence during geriatric rehabilitation: a randomized controlled trial. BMC Geriatr. 17, 1–9 (2017). https://doi.org/10.1186/s12877-017-0467-7

    Article  Google Scholar 

  113. Orland, K., Remo, C.: Games for health: Noah Falstein on exergaming history (2008). https://www.gamedeveloper.com/pc/games-for-health-noah-falstein-on-exergaming-history. Accessed 21 July 2022

  114. Owen, N., Healy, G.N., Matthews, C.E., Dunstan, D.W.: Too much sitting: the population health science of sedentary behavior. Exerc. Sport Sci. Rev. 38, 105–113 (2010). https://doi.org/10.1097/JES.0b013e3181e373a2

    Article  Google Scholar 

  115. Pearce, M., Garcia, L., Abbas, A., Strain, T., Schuch, F.B., Golubic, R., Kelly, P., Khan, S., Utukuri, M., Laird, Y., Mok, A., Smith, A., Tainio, M., Brage, S., Woodcock, J.: Association between physical activity and risk of depression: a systematic review and meta-analysis. JAMA Psychiat. 79, 550–559 (2022). https://doi.org/10.1001/jamapsychiatry.2022.0609

    Article  Google Scholar 

  116. Pedersen, B.K., Saltin, B.: Exercise as medicine: evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sport. 25, 1–72 (2015). https://doi.org/10.1111/sms.12581

    Article  Google Scholar 

  117. Peng, W., Crouse, J.C., Lin, J.H.: Using active video games for physical activity promotion: a systematic review of the current state of research. Heal. Educ. Behav. 40, 171–192 (2013). https://doi.org/10.1177/1090198112444956

    Article  Google Scholar 

  118. Peng, W., Lin, J.H., Crouse, J.: Is playing exergames really exercising? A meta-analysis of energy expenditure in active video games. Cyberpsychol. Behav. Soc. Netw. 14, 681–688 (2011). https://doi.org/10.1089/cyber.2010.0578

  119. Pickles, J., Schättin, A., Flagmeier, D., Schärer, B., Riederer, Y., Niedecken, S., Villiger, S., Jurt, R., Kind, N., Scott, S., Stettlerr, C., Martin-Niedecken, A.L.: Exergaming mit „On-Body“ Feedbacksystem für den Heimgebrauch. In: dvs Hochschultag 2022, dvs Band 298. Edition Czwalina (2022)

    Google Scholar 

  120. Rainmaker, DC.: The End of An Era: CompuTrainer Ceases Production. The End of An Era: CompuTrainer Ceases Production | DC Rainmaker (2017). Accessed 21 July 2022

    Google Scholar 

  121. Reiner, M., Niermann, C., Jekauc, D., Woll, A.: Long-term health benefits of physical activity: a systematic review of longitudinal studies. BMC Public Health 13, 813 (2013). https://doi.org/10.1186/1471-2458-13-813

    Article  Google Scholar 

  122. Reis, E., Postolache, G., Teixeira, L., Arriaga, P., Lima, M.L., Postolache, O.: Exergames for motor rehabilitation in older adults: an umbrella review. Phys. Ther. Rev. 24, 84–99 (2019). https://doi.org/10.1080/10833196.2019.1639012

    Article  Google Scholar 

  123. Rendon, A.A., Lohman, E.B., Thorpe, D., Johnson, E.G., Medina, E., Bradley, B.: The effect of virtual reality gaming on dynamic balance in older adults. Age Ageing. 41, 549–552 (2012). https://doi.org/10.1093/ageing/afs053

    Article  Google Scholar 

  124. Rezende, L.F.M., Sá, T.H., Mielke, G.I., Viscondi, J.Y.K., Rey-López, J.P., Garcia, L.M.T.: All-cause mortality attributable to sitting time: analysis of 54 countries worldwide. Am. J. Prev. Med. 51, 253–263 (2016). https://doi.org/10.1016/j.amepre.2016.01.022

    Article  Google Scholar 

  125. Röglin, L., Ketelhut, S., Ketelhut, K., Kircher, E., Ketelhut, R.G., Martin-Niedecken, A.L., Hottenrott, K., Stoll, O.: Adaptive high-intensity exergaming: the more enjoyable alternative to conventional training approaches despite working Harder. Games Health J. 10, 400–407 (2021). https://doi.org/10.1089/g4h.2021.0014

    Article  Google Scholar 

  126. Röglin, L., Stoll, O., Ketelhut, K., Martin-Niedecken, A. L., & Ketelhut, S.: Evaluating Changes in Perceived Enjoyment throughout a 12-Week School-Based Exergaming Intervention. Children 10, 144 (2023). https://doi.org/10.3390/children10010144

  127. Schättin, A., Arner, R., Gennaro, F., de Bruin, E.D.: Adaptations of prefrontal brain activity, executive functions, and gait in healthy elderly following exergame and balance training: A randomized-controlled study. Front. Aging Neurosci. 8 (2016). https://doi.org/10.3389/fnagi.2016.00278

  128. Schneider, M.: Intrinsic motivation mediates the association between exercise-associated affect and physical activity among adolescents. Front. Psychol. 9 (2018). https://doi.org/10.3389/fpsyg.2018.01151

  129. Schnohr, P., Marott, J.L., Jensen, J.S., Jensen, G.B.: Intensity versus duration of cycling, impact on all-cause and coronary heart disease mortality: the Copenhagen City Heart Study. Eur. J. Prev. Cardiol. 19, 73–80 (2012). https://doi.org/10.1177/1741826710393196

    Article  Google Scholar 

  130. Schoene, D., Lord, S.R., Delbaere, K., Severino, C., Davies, T.A., Smith, S.T.: A randomized controlled pilot study of home-based step training in older people using videogame technology. PLoS One. 8 (2013). https://doi.org/10.1371/journal.pone.0057734

  131. Schürch, Y., Burger, M., Amor, L., Zehnder, C., Benzing, V., Mieschler, M., Baur, H., Schmid, S., Bangerter, C., Nigg, C.R., Ketelhut, S.: Comparison of an exergame and a moderate-intensity endurance training intervention on physiological parameters. Curr. Issues Sport Sci. (CISS) 8(2), 071 (2023). https://doi.org/10.36950/2023.2ciss071

  132. Schuch, F., Vancampfort, D., Firth, J., Rosenbaum, S., Ward, P., Reichert, T., Bagatini, N.C., Bgeginski, R., Stubbs, B.: Physical activity and sedentary behavior in people with major depressive disorder: a systematic review and meta-analysis. J. Affect. Disord. 210, 139–150 (2017). https://doi.org/10.1016/j.jad.2016.10.050

    Article  Google Scholar 

  133. Schuch, F.B., Vancampfort, D., Firth, J., Rosenbaum, S., Ward, P.B., Silva, E.S., Hallgren, M., De Leon, A.P., Dunn, A.L., Deslandes, A.C., Fleck, M.P., Carvalho, A.F., Stubbs, B.: Physical activity and incident depression: a meta-analysis of prospective cohort studies. Am. J. Psychiatry. 175, 631–648 (2018). https://doi.org/10.1176/appi.ajp.2018.17111194

    Article  Google Scholar 

  134. Sestino, A., Guido, G., Peluso, A.M.: The Concept and Technicalities of NFTs. In: Non-Fungible Tokens (NFTs). Palgrave Macmillan, Cham (2022)

    Google Scholar 

  135. Sheehan, D.P., Katz, L.: The impact of a six week exergaming curriculum on balance with grade three school children using the wii FIT+TM. Int. J. Comput. Sci. Sport. 11, 5–22 (2012)

    Google Scholar 

  136. Silveira, H., Moraes, H., Oliveira, N., Coutinho, E.S.F., Laks, J., Deslandes, A.: Physical exercise and clinically depressed patients: a systematic review and meta-analysis. Neuropsychobiology 67, 61–68 (2013). https://doi.org/10.1159/000345160

    Article  Google Scholar 

  137. Skjæret, N., Nawaz, A., Morat, T., Schoene, D., Helbostad, J.L., Vereijken, B.: Exercise and rehabilitation delivered through exergames in older adults: an integrative review of technologies, safety and efficacy. Int. J. Med. Inform. 85, 1–16 (2016). https://doi.org/10.1016/j.ijmedinf.2015.10.008

    Article  Google Scholar 

  138. Smits-Engelsman, B.C.M., Jelsma, L.D., Ferguson, G.D.: The effect of exergames on functional strength, anaerobic fitness, balance and agility in children with and without motor coordination difficulties living in low-income communities. Hum. Mov. Sci. 55, 327–337 (2017). https://doi.org/10.1016/j.humov.2016.07.006

    Article  Google Scholar 

  139. Staiano, A.E., Beyl, R.A., Guan, W., Hendrick, C.A., Hsia, D.S., Newton, R.L.: Home-based exergaming among children with overweight and obesity: a randomized clinical trial. Pediatr. Obes. 13, 724–733 (2018). https://doi.org/10.1111/ijpo.12438

    Article  Google Scholar 

  140. Staiano, A.E., Calvert, S.L.: Exergames for physical education courses: physical, social, and cognitive benefits. Child Dev. Perspect. 5, 93–98 (2011). https://doi.org/10.1111/j.1750-8606.2011.00162.x

    Article  Google Scholar 

  141. Stojan, R., Voelcker-Rehage, C.: A systematic review on the cognitive benefits and neurophysiological correlates of exergaming in healthy older adults. J. Clin. Med. 8 (2019). https://doi.org/10.3390/jcm8050734

  142. Street, T.D., Lacey, S.J., Langdon, R.R.: Gaming your way to health: a systematic review of exergaming programs to increase health and exercise behaviors in adults. Games Health J. 6, 136–146 (2017). https://doi.org/10.1089/g4h.2016.0102

    Article  Google Scholar 

  143. Sween, J., Wallington, S.F., Sheppard, V., Taylor, T., Llanos, A.A., Adams-Campbell, L.L.: The role of exergaming in improving physical activity: a review. 11, 864–870 (2014). https://doi.org/10.1123/jpah.2011-0425

  144. Tan, B., Aziz, A.R., Chua, K., Teh, K.C.: Aerobic demands of the dance simulation game. Int. J. Sports Med. 23, 125–129 (2002). https://doi.org/10.1055/s-2002-20132

    Article  Google Scholar 

  145. Taylor, M.J.D., Griffin, M.: The use of gaming technology for rehabilitation in people with multiple sclerosis. Mult. Scler. J. 21, 355–371 (2015). https://doi.org/10.1177/1352458514563593

    Article  Google Scholar 

  146. Taylor, M.J.D., McCormick, D., Shawis, T., Impson, R., Griffin, M.: Activity-promoting gaming systems in exercise and rehabilitation. J. Rehabil. Res. Dev. 48, 1171–1186 (2011). https://doi.org/10.1682/JRRD.2010.09.0171

    Article  Google Scholar 

  147. Taylor, M., Shawis, T., Impson, R.: Nintendo Wii as a training tool in falls prevention rehabilitation: case studies. J Am Geriatr Soc. 60, 1781–1783 (2012)

    Article  Google Scholar 

  148. Thorp, A.A., Owen, N., Neuhaus, M., Dunstan, D.W.: Sedentary behaviors and subsequent health outcomes in adults: a systematic review of longitudinal studies, 19962011. Am. J. Prev. Med. 41, 207–215 (2011). https://doi.org/10.1016/j.amepre.2011.05.004

    Article  Google Scholar 

  149. Tietjen, A.M.J., Devereux, G.R.: Physical demands of exergaming in healthy young adults. J. Strength Cond. Res. 33, 1978–1986 (2019). https://doi.org/10.1519/JSC.0000000000002235

    Article  Google Scholar 

  150. Tremblay, M.S., Colley, R.C., Saunders, T.J., Healy, G.N., Owen, N.: Physiological and health implications of a sedentary lifestyle. Appl. Physiol. Nutr. Metab. 35, 725–740 (2010). https://doi.org/10.1139/H10-079

    Article  Google Scholar 

  151. Tripette, J., Murakami, H., Gando, Y., Kawakami, R., Sasaki, A., Hanawa, S., Hirosako, A., Miyachi, M.: Home-based active video games to promote weight loss during the postpartum period. Med. Sci. Sports Exerc. 46, 472–478 (2014). https://doi.org/10.1249/MSS.0000000000000136

    Article  Google Scholar 

  152. Valenzuela, T., Okubo, Y., Woodbury, A., Lord, S.R., Delbaere, K.: Adherence to technology-based exercise programs in older adults: a systematic review. J. Geriatr. Phys. Ther. 41, 49–61 (2018). https://doi.org/10.1519/JPT.0000000000000095

    Article  Google Scholar 

  153. Valeriani, F., Protano, C., Marotta, D., Liguori, G., Spica, V.R., Valerio, G., Vitali, M., Gallè, F.: Exergames in childhood obesity treatment: A systematic review. Int. J. Environ. Res. Public Health. 18 (2021). https://doi.org/10.3390/ijerph18094938

  154. Veerman, J.L., Healy, G.N., Cobiac, L.J., Vos, T., Winkler, E.A.H., Owen, N., Dunstan, D.W.: Television viewing time and reduced life expectancy: a life table analysis. Br. J. Sports Med. 46, 927–930 (2012). https://doi.org/10.1136/bjsports-2011-085662

    Article  Google Scholar 

  155. Vernadakis, N., Papastergiou, M., Zetou, E., Antoniou, P.: The impact of an exergame-based intervention on children’s fundamental motor skills. Comput. Educ. 83, 90–102 (2015). https://doi.org/10.1016/j.compedu.2015.01.001

    Article  Google Scholar 

  156. Viana, R.B., Vancini, R.L., Vieira, C.A., Gentil, P., Campos, M.H., Andrade, M.S., de Lira, C.A.B.: Profiling exercise intensity during the exergame Hollywood Workout on XBOX 360 Kinect®. PeerJ 2018, 1–16 (2018). https://doi.org/10.7717/peerj.5574

    Article  Google Scholar 

  157. Warburton, D.E.R., Bredin, S.S.D., Horita, L.T.L., Zbogar, D., Scott, J.M., Esch, B.T.A., Rhodes, R.E.: The health benefits of interactive video game exercise. Appl. Physiol. Nutr. Metab. 32, 655–663 (2007). https://doi.org/10.1139/H07-038

    Article  Google Scholar 

  158. Willems, M., Bond, T.S.: Comparison of Physiological and Metabolic Responses to Playing Nintendo Wii Sports and Brisk Treadmill Walking (2009)

    Google Scholar 

  159. Wollersheim, D., Merkes, M., Shields, N., Liamputtong, P., Wallis, L., Reynolds, F., Koh, L.: Physical and psychosocial effects of Wii video game use among older women. Aust. J. Emerg. Technol. Soc. 8, 85–98 (2010)

    Google Scholar 

  160. World Health Organisation: Global action plan on physical activity 2018–2030: more active people for a healthier world. World, Geneva (2018)

    Google Scholar 

  161. World Health Organisation: WHO Guidelines on Physical Activity and Sedentary Behaviour

    Google Scholar 

  162. World Health Organization: Global Recommendations on Physical Activity for Health. World Health Organization, Geneva (2010)

    Google Scholar 

  163. Wu, Y., Zhang, D., Kang, S.: Physical activity and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res. Treat. 137, 869–882 (2013). https://doi.org/10.1007/s10549-012-2396-7

    Article  Google Scholar 

  164. Xiong, S., Zhang, P., Gao, Z.: Effects of exergaming on preschoolers’ executive functions and perceived competence: a pilot randomized trial. J. Clin. Med. 8, 4–5 (2019). https://doi.org/10.3390/jcm8040469

    Article  Google Scholar 

  165. Ye, S., Lee, J., Stodden, D., Gao, Z.: Impact of exergaming on children’s motor skill competence and health-related fitness: a quasi-experimental study. J. Clin. Med. 7, 261 (2018). https://doi.org/10.3390/jcm7090261

    Article  Google Scholar 

  166. Yee, N., Bailenson, J.: The proteus effect: the effect of transformed self-representation on behavior. Hum. Commun. Res. 33, 271–290 (2007). https://doi.org/10.1111/j.1468-2958.2007.00299.x

    Article  Google Scholar 

  167. Yu, T.C., Chiang, C.H., Wu, P.T., Wu, W.L., Chu, I.H.: Effects of exergames on physical fitness in middle- aged and older adults in Taiwan. Int. J. Environ. Res. Public Health. 17 (2020). https://doi.org/10.3390/ijerph17072565

  168. Zahl, T., Steinsbekk, S., Wichstrøm, L.: Physical activity, sedentary behavior, and symptoms of major depression in middle childhood. Pediatrics. 139 (2017). https://doi.org/10.1542/peds.2016-1711

  169. Zyda, M.: From visual to virtual reality to games. IEEE Comput. Soc. 1, 25–32 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Röglin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Röglin, L., Martin-Niedecken, A.L., Ketelhut, S. (2023). Exercising Digitally: A Multi-Perspective Analysis of Exergames for Physical Activity and Health Promotion. In: Brooks, A.L. (eds) Creating Digitally. Intelligent Systems Reference Library, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-031-31360-8_4

Download citation

Publish with us

Policies and ethics