Skip to main content

Impact of Morphology Variations on Evolved Neural Controllers for Modular Robots

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2022)

Abstract

Modular robots, in particular those in which the modules are physically interchangeable, are suitable to be evolved because they allow for many different designs. Moreover, they can constitute ecosystems where “old” robots are disassembled and the resulting modules are composed together, either within an external assembling facility or by self-assembly procedures, to form new robots. However, in practical settings, self-assembly may result in morphologies that are slightly different from the expected ones: this may cause a detrimental misalignment between controller and morphology. Here, we characterize experimentally the robustness of neural controllers for Voxel-based Soft Robots, a kind of modular robots, with respect to small variations in the morphology. We employ evolutionary computation for optimizing the controllers and assess the impact of morphology variations along two axes: kind of morphology and size of the robot. Moreover, we quantify the advantage of performing a re-optimization of the controller for the varied morphology. Our results show that small variations in the morphology are in general detrimental for the performance of the evolved neural controller. Yet, a short re-optimization is often sufficient for aligning back the performance of the modified robot to the original one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corucci, F., Cheney, N., Giorgio-Serchi, F., Bongard, J., Laschi, C.: Evolving soft locomotion in aquatic and terrestrial environments: effects of material properties and environmental transitions. Soft Rob. 5(4), 475–495 (2018)

    Article  Google Scholar 

  2. Faiña, A.: Evolving modular robots: challenges and opportunities. In: ALIFE 2021: The 2021 Conference on Artificial Life. MIT Press (2021)

    Google Scholar 

  3. Hale, M., et al.: The are robot fabricator: how to (re) produce robots that can evolve in the real world. In: International Society for Artificial Life: ALIFE2019, pp. 95–102. York (2019)

    Google Scholar 

  4. Li, S., et al.: Scaling up soft robotics: a meter-scale, modular, and reconfigurable soft robotic system. Soft Rob. 9(2), 324–336 (2022)

    Article  MathSciNet  Google Scholar 

  5. Malley, M., Haghighat, B., Houe, L., Nagpal, R.: Eciton robotica: design and algorithms for an adaptive self-assembling soft robot collective. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 4565–4571. IEEE (2020)

    Google Scholar 

  6. Manfredi, V.M.: Lo Scudo di Talos. Edizioni Mondadori, Milan (2013)

    Google Scholar 

  7. Medvet, E., Bartoli, A., De Lorenzo, A., Fidel, G.: Evolution of distributed neural controllers for voxel-based soft robots. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 112–120 (2020)

    Google Scholar 

  8. Medvet, E., Bartoli, A., De Lorenzo, A., Seriani, S.: 2D-VSR-Sim: a simulation tool for the optimization of 2-D voxel-based soft robots. SoftwareX 12, 100573 (2020)

    Article  Google Scholar 

  9. Medvet, E., Bartoli, A., Pigozzi, F., Rochelli, M.: Biodiversity in evolved voxel-based soft robots. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 129–137 (2021)

    Google Scholar 

  10. Medvet, E., Nadizar, G., Manzoni, L.: JGEA: a modular java framework for experimenting with evolutionary computation. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion (2022)

    Google Scholar 

  11. Medvet, E., Nadizar, G., Pigozzi, F.: On the impact of body material properties on neuroevolution for embodied agents: the case of voxel-based soft robots. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion (2022)

    Google Scholar 

  12. Moreno, R., Faiña, A.: EMERGE modular robot: a tool for fast deployment of evolved robots. Front. Robot. AI 8, 198 (2021)

    Article  Google Scholar 

  13. Moreno, R., Faiña, A.: Out of time: on the constrains that evolution in hardware faces when evolving modular robots. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds.) EvoApplications 2022. LNCS, vol. 13224, pp. 667–682. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02462-7_42

    Chapter  Google Scholar 

  14. Mouret, J.B., Chatzilygeroudis, K.: 20 years of reality gap: a few thoughts about simulators in evolutionary robotics. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1121–1124 (2017)

    Google Scholar 

  15. Nadizar, G., Medvet, E., Miras, K.: On the schedule for morphological development of evolved modular soft robots. In: Medvet, E., Pappa, G., Xue, B. (eds.) Genetic Programming. EuroGP 2022. Lecture Notes in Computer Science (Part of EvoStar), vol. 13223, pp. 146–161. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02056-8_10

  16. Nadizar, G., Medvet, E., Nichele, S., Pontes-Filho, S.: Collective control of modular soft robots via embodied Spiking Neural Cellular Automata. arXiv preprint arXiv:2204.02099 (2022)

  17. Peck, R.H., Timmis, J., Tyrrell, A.M.: Self-assembly and self-repair during motion with modular robots. Electronics 11(10), 1595 (2022)

    Article  Google Scholar 

  18. Pfeifer, R., Gómez, G.: Morphological computation-connecting brain, body, and environment. In: Creating Brain-Like Intelligence, pp. 66–83. Springer, Cham (2009)

    Google Scholar 

  19. Pigozzi, F., Tang, Y., Medvet, E., Ha, D.: Evolving modular soft robots without explicit inter-module communication using local self-attention. In: Proceedings of the Genetic and Evolutionary Computation Conference (2022)

    Google Scholar 

  20. Salvato, E., Fenu, G., Medvet, E., Pellegrino, F.A.: Crossing the reality gap: a survey on sim-to-real transferability of robot controllers in reinforcement learning. IEEE Access 9, 153171–153187 (2021)

    Article  Google Scholar 

  21. Talamini, J., Medvet, E., Nichele, S.: Criticality-driven evolution of adaptable morphologies of voxel-based soft-robots. Front. Robot. AI 8, 673156 (2021)

    Article  Google Scholar 

  22. Zahedi, K., Ay, N.: Quantifying morphological computation. Entropy 15(5), 1887–1915 (2013)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Medvet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Medvet, E., Rusin, F. (2023). Impact of Morphology Variations on Evolved Neural Controllers for Modular Robots. In: De Stefano, C., Fontanella, F., Vanneschi, L. (eds) Artificial Life and Evolutionary Computation. WIVACE 2022. Communications in Computer and Information Science, vol 1780. Springer, Cham. https://doi.org/10.1007/978-3-031-31183-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31183-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31182-6

  • Online ISBN: 978-3-031-31183-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics