Skip to main content

Acoustic and Visual Sensor Fusion-Based Rover System for Safe Navigation in Deformed Terrain

  • Conference paper
  • First Online:
Proceedings of International Conference on Intelligent Vision and Computing (ICIVC 2022) (ICIVC 2022)

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 17))

Included in the following conference series:

  • 202 Accesses

Abstract

With the growing development of autonomous navigation technologies, transportation systems have become safer and hassle-free. However, this decreasing necessity for human intervention has been both a boon and a bane for novel technologies. Utilising autonomous driving systems in highly rugged terrains has become very sophisticated and challenging. Upgradation of persisting navigation technologies in deformed terrains can improve accessibility, economy, security, traffic, and travel time. Therefore, the current preliminary research illustrates an acoustic wave and visual navigation-based rover system that can better navigate by monitoring the terra-formations using the acoustic and visual sensors to receive the reflected signal and image, respectively. The implementation tries to map the sensed world to a digital twin that the rover navigates through. The realisation of the model and the essential metrics are illustrated. The extension of the proposed technology to a grander scale in automobiles must be examined in several other environments and more focused on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chellaswamy, C., Famitha, H., Anusuya, T., Amirthavarshini, S.B.: IoT based humps and pothole detection on roads and information sharing. In: 2018 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), pp. 084–090. IEEE (2018)

    Google Scholar 

  2. Rahman, A., Mustafa, R., Hossain, M.S.: Real-time pothole detection and localization using convolutional neural network. In: Arefin, M.S., Kaiser, M.S., Bandyopadhyay, A., Ahad, M.A.R., Ray, K. (eds.) Proceedings of the International Conference on Big Data, IoT, and Machine Learning. LNDECT, vol. 95, pp. 579–592. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-6636-0_44

    Chapter  Google Scholar 

  3. Chellaswamy, C., Saravanan, M., Kanchana, E., Shalini, J., Others: Deep learning based pothole detection and reporting system. In: 2020 7th International Conference on Smart Structures and Systems (ICSSS), pp. 1–6. IEEE (2020)

    Google Scholar 

  4. Rateke, T., Justen, K.A., Von Wangenheim, A.: Road surface classification with images captured from low-cost camera-road traversing knowledge (rtk) dataset. Revista de Informática Teórica e Aplicada 26, 50–64 (2019)

    Google Scholar 

  5. Springer, M., Ament, C.: A mobile and modular low-cost sensor system for road surface recognition using a bicycle. In: 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 360–366. IEEE (2020)

    Google Scholar 

  6. Menegazzo, J., von Wangenheim, A.: Multi-contextual and multi-aspect analysis for road surface type classification through inertial sensors and deep learning. In: 2020 X Brazilian Symposium on Computing Systems Engineering (SBESC), pp. 1–8. IEEE (2020)

    Google Scholar 

  7. Blanche, J., Mitchell, D., Flynn, D.: Run-time analysis of road surface conditions using non-contact microwave sensing. In: 2020 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT), pp. 1–6. IEEE (2020)

    Google Scholar 

  8. Mandal, V., Mussah, A.R., Adu-Gyamfi, Y.: Deep learning frameworks for pavement distress classification: a comparative analysis. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 5577–5583. IEEE (2020)

    Google Scholar 

  9. Tasmin, T., Wang, J., Dia, H., Richards, D., Tushar, Q.: A probabilistic approach to evaluate the relationship between visual and quantified pavement distress data using logistic regression. In: 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), pp. 1–4. IEEE (2020)

    Google Scholar 

  10. Reddy, E.J., Reddy, P.N., Maithreyi, G., Balaji, M.B.C., Dash, S.K., Kumari, K.A.: Development and analysis of pothole detection and alert based on NodeMCU. In: 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), pp. 1–5. IEEE (2020)

    Google Scholar 

  11. Madli, R., Hebbar, S., Pattar, P., Golla, V.: Automatic detection and notification of potholes and humps on roads to aid drivers. IEEE Sens. J. 15, 4313–4318 (2015)

    Article  Google Scholar 

  12. Gorintla, S., Kumar, B.A., Chanadana, B.S., Sai, N.R., Kumar, G.S.C.: Deep-learning-based intelligent PotholeEye+ detection pavement distress detection system. In: 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), pp. 1864–1869. IEEE (2022)

    Google Scholar 

  13. Nguyen, T., Lechner, B., Wong, Y.D.: Response-based methods to measure road surface irregularity: a state-of-the-art review. Eur. Transp. Res. Rev. 11(1), 1–18 (2019). https://doi.org/10.1186/s12544-019-0380-6

    Article  Google Scholar 

  14. Rateke, T., von Wangenheim, A.: Road surface detection and differentiation considering surface damages. Auton. Robot. 45(2), 299–312 (2021). https://doi.org/10.1007/s10514-020-09964-3

    Article  Google Scholar 

  15. Lõuk, R., Tepljakov, A., Riid, A.: A two-stream context-aware ConvNet for pavement distress detection. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 270–273. IEEE (2020)

    Google Scholar 

  16. Ogawa, N., Maeda, K., Ogawa, T., Haseyama, M.: Degradation level estimation of road structures via attention branch network with text data. In: 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), pp. 1–2. IEEE (2021)

    Google Scholar 

  17. Liang, X., Yu, X., Chen, C., Jin, Y., Huang, J.: Automatic classification of pavement distress using 3D ground-penetrating radar and deep convolutional neural network. IEEE Trans. Intell. Transp. Syst. 23(11), 22269–22277 (2022). https://doi.org/10.1109/TITS.2022.3197712

  18. Sun, X., Xie, Y., Jiang, L., Cao, Y., Liu, B.: DMA-Net: DeepLab with multi-scale attention for pavement crack segmentation. IEEE Trans. Intell. Transp. Syst. 23(10), 18392–18403 (2022)

    Google Scholar 

  19. Liu, Z., Gu, X., Yang, H., Wang, L., Chen, Y., Wang, D.: Novel YOLOv3 model with structure and hyperparameter optimization for detection of pavement concealed cracks in GPR images. IEEE Trans. Intell. Transp. Syst. 23(11), 22258–22268 (2022)

    Google Scholar 

  20. Christodoulou, S.E., Hadjidemetriou, G.M., Kyriakou, C.: Pavement defects detection and classification using smartphone-based vibration and video signals. In: Workshop of the European Group for Intelligent Computing in Engineering, pp. 125–138 (2018)

    Google Scholar 

  21. Li, W., Burrow, M., Metje, N., Ghataora, G.: Automatic road survey by using vehicle mounted laser for road asset management. IEEE Access. 8, 94643–94653 (2020)

    Article  Google Scholar 

  22. Zajic, G., Popovic, K., Gavrovska, A., Reljin, I., Reljin, B.: Video-based assistance for autonomous driving. In: 2020 Zooming Innovation in Consumer Technologies Conference (ZINC), pp. 151–154. IEEE (2020)

    Google Scholar 

  23. Golovnin, O.K., Rybnikov, D.V.: Video processing method for high-definition maps generation. In: 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), pp. 1–5. IEEE (2020)

    Google Scholar 

  24. Jingxiang, Z., Jinxi, Z., Dandan, C.: Preliminary study on pavement performance characteristics based on intelligent method. In: 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp. 1484–1490. IEEE (2020)

    Google Scholar 

  25. Lembach, J., Stricker, R., Gross, H.-M.: Efficient implementation of regional mutual information for the registration of road images. In: 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6. IEEE (2020)

    Google Scholar 

  26. Auriacombe, O., Vassilev, V., Pinel, N.: Dual-polarised radiometer for road surface characterisation. J. Infrared Millimeter Terahertz Waves 43(1–2), 108–124 (2022). https://doi.org/10.1007/s10762-022-00847-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranav Pothapragada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pothapragada, P., Neelamraju, P.M. (2023). Acoustic and Visual Sensor Fusion-Based Rover System for Safe Navigation in Deformed Terrain. In: Sharma, H., Saha, A.K., Prasad, M. (eds) Proceedings of International Conference on Intelligent Vision and Computing (ICIVC 2022). ICIVC 2022. Proceedings in Adaptation, Learning and Optimization, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-031-31164-2_29

Download citation

Publish with us

Policies and ethics