Skip to main content

Gap Labelling for Discrete One-Dimensional Ergodic Schrödinger Operators

  • Chapter
  • First Online:
From Complex Analysis to Operator Theory: A Panorama

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 291))

Abstract

In this survey, we give an introduction to and proof of the gap labelling theorem for discrete one-dimensional ergodic Schrödinger operators via the Schwartzman homomorphism. To keep the paper relatively self-contained, we include background on the integrated density of states, the oscillation theorem for 1D operators, and the construction of the Schwartzman homomorphism. We illustrate the result with some examples. In particular, we show how to use the Schwartzman formalism to recover the classical gap-labelling theorem for almost-periodic potentials. We also consider operators generated by subshifts and operators generated by affine homeomorphisms of finite-dimensional tori. In the latter case, one can use the gap-labelling theorem to show that the spectrum associated with potentials generated by suitable transformations (such as Arnold’s cat map) is an interval.

Dedicated to the memory of Sergey Naboko

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We employ a minor but standard abuse of notation, writing \(\alpha \) both for the element of \({\mathbb R}^d\) and its projection to \({\mathbb T}^d\). This will be convenient later on when we talk about flows.

  2. 2.

    To be more precise, while \({\mathfrak {A}}\) does not have an immediate analogue in higher dimensions in general, in the specific setting considered in these papers, \({\mathfrak {A}}\) can be identified as a set, compare (1.12), that does have a natural higher-dimensional counterpart.

  3. 3.

    The trace is at most two since the solution space of \(H_\omega \psi = E_0\psi \) is two-dimensional; this bound already suffices for this argument. One can reduce the two to one by using constancy of the Wronskian.

  4. 4.

    Recall that we write \(\alpha \) both for the vector in \({\mathbb R}^d\) and its projection to \({\mathbb T}^d\).

  5. 5.

    This is well known and not hard to show using that any map \({\mathbb T} \to {\mathbb T}\) is homotopic to \(x\mapsto nx\) for some \(n \in {\mathbb Z}\). Alternatively, it also follows from the more general discussion below in Sect. 6.3.

  6. 6.

    We are writing the abelian group \(\Omega \) additively, so one should understand the zero in the first coordinate as the additive identity element of \(\Omega \).

  7. 7.

    Notice that this is stronger than just proving uniform continuity of \(\widetilde G\), since \(d([\alpha ,t],[\alpha ,s])\) can be small even if \(s-t\) is not small.

  8. 8.

    This uses \(A0=0\).

  9. 9.

    Indeed, the spectrum of any Schrödinger operator in \(\ell ^2({\mathbb Z})\) with a non-constant periodic potential has at least one gap [43].

References

  1. A. Avila, S. Jitomirskaya, Almost localization and almost reducibility. J. Eur. Math. Soc. 12(1), 93–131 (2010)

    MathSciNet  MATH  Google Scholar 

  2. A. Avila, J. You, Q. Zhou, Dry ten Martini problem in non-critical case. In preparation.

    Google Scholar 

  3. A. Avila, J. Bochi, D. Damanik, Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts. Duke Math. J. 146(2), 253–280 (2009)

    MathSciNet  MATH  Google Scholar 

  4. A. Avila, J. Bochi, D. Damanik, Opening gaps in the spectrum of strictly ergodic Schrödinger operators. J. Eur. Math. Soc. 14(1), 61–106 (2012)

    MathSciNet  MATH  Google Scholar 

  5. J. Avron, B. Simon, Almost periodic Schrödinger operators. II. The integrated density of states. Duke Math. J. 50(1), 369–391 (1983)

    MATH  Google Scholar 

  6. M. Baake, U. Grimm, D. Joseph, Trace maps, invariants, and some of their applications. Internat. J. Modern Phys. B 7(6–7), 1527–1550 (1993)

    MathSciNet  MATH  Google Scholar 

  7. M. Baake, U. Grimm, C. Pisani, Partition function zeros for aperiodic systems. J. Statist. Phys. 78(1–2), 285–297 (1995). Papers dedicated to the memory of Lars Onsager

    Google Scholar 

  8. J. Bellissard, K-theory of \(C^\ast \)-algebras in solid state physics, in Statistical Mechanics and Field Theory: Mathematical Aspects (Groningen, 1985), ed. by T.C. Dorlas, N.M. Hugenholtz, M. Winnink, vol. 257 of Lecture Notes in Physics (Springer, Berlin, 1986), pp. 99–156

    Google Scholar 

  9. J. Bellissard, Spectral properties of Schrödinger’s operator with a Thue-Morse potential, in Number Theory and Physics (Les Houches, 1989), ed. by J.M. Luck, P. Moussa, M. Waldschmidt, vol. 47 of Springer Proceedings in Physics (Springer, Berlin, 1990), pp. 140–150

    Google Scholar 

  10. J. Bellissard, Gap labelling theorems for Schrödinger operators, in From Number Theory to Physics (Les Houches, 1989), ed. by M. Waldschmidt, P. Moussa, J.M. Luck, C. Itzykson (Springer, Berlin, 1992), pp. 538–630

    Google Scholar 

  11. J. Bellissard, The noncommutative geometry of aperiodic solids, in Geometric and Topological Methods for Quantum Field Theory (Villa de Leyva, 2001), ed. by A. Cardona, S. Paycha, H. Ocampo (World Scientific Publishing, River Edge, 2003), pp. 86–156.

    Google Scholar 

  12. J. Bellissard, A. Bovier, J.-M. Ghez, Spectral properties of a tight binding Hamiltonian with period doubling potential. Comm. Math. Phys. 135(2), 379–399 (1991)

    MathSciNet  MATH  Google Scholar 

  13. J. Bellissard, A. Bovier, J.-M. Ghez, Gap labelling theorems for one-dimensional discrete Schrödinger operators. Rev. Math. Phys. 4(1), 1–37 (1992)

    MathSciNet  MATH  Google Scholar 

  14. J. Bellissard, R. Benedetti, J.-M. Gambaudo, Spaces of tilings, finite telescopic approximations and gap-labeling. Comm. Math. Phys. 261(1), 1–41 (2006)

    MathSciNet  MATH  Google Scholar 

  15. J. Bellissard, J. Kellendonk, A. Legrand, Gap-labelling for three-dimensional aperiodic solids. C. R. Acad. Sci. Paris Sér. I Math. 332(6), 521–525 (2001)

    MathSciNet  MATH  Google Scholar 

  16. M.-T. Benameur, H. Oyono-Oyono, Gap-labelling for quasi-crystals (proving a conjecture by J. Bellissard), in Operator Algebras and Mathematical Physics (Constanţa, 2001), ed. by J.-M. Combes, J. Cuntz, G.A. Elliott, G. Nenciu, H. Siedentop, Ş. Strătilă (Theta, Bucharest, 2003), pp. 11–22

    Google Scholar 

  17. M.M. Benderskiı̆, L.A. Pastur, The spectrum of the one-dimensional Schrödinger equation with random potential. Mat. Sb. (N.S.) 82(124), 273–284 (1970)

    Google Scholar 

  18. V. Bergelson, A. Leibman, C.G. Moreira, From discrete- to continuous-time ergodic theorems. Ergodic Theory Dynam. Systems 32(2), 383–426 (2012)

    MathSciNet  MATH  Google Scholar 

  19. M. Bôcher, The theorems of oscillation of Sturm and Klein. (third paper). Bull. Amer. Math. Soc. 5(1), 22–43 (1898)

    Google Scholar 

  20. D.S. Borgnia, R.-J. Slager, The dry ten Martini problem at criticality. Preprint. arXiv:2112.06869

    Google Scholar 

  21. R. Carmona, J. Lacroix, in Spectral Theory of Random Schrödinger Operators. Probability and Its Applications (Birkhäuser, Boston, 1990)

    Google Scholar 

  22. M.D. Choi, G.A. Elliott, N. Yui, Gauss polynomials and the rotation algebra. Invent. Math. 99(2), 225–246 (1990)

    MathSciNet  MATH  Google Scholar 

  23. V.A. Chulaevsky, in Almost Periodic Operators and Related Nonlinear Integrable Systems. Nonlinear Science: Theory and Applications (Manchester University Press, Manchester, 1989). With a foreword by Ya. G. Sinaı̆, Translated from the Russian

    Google Scholar 

  24. H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, in Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics (Springer-Verlag, Berlin, study edition, 1987)

    Google Scholar 

  25. D. Damanik, Lyapunov exponents and spectral analysis of ergodic Schrödinger operators: a survey of Kotani theory and its applications, in Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, ed. by F. Gesztesy, P. Deift, Percy, C. Galvez, P. Perry, W. Schlag, vol. 76 of Proceedings of Symposia in Pure Mathematics (American Mathematical Society, Providence, 2007), pp. 539–563

    Google Scholar 

  26. D. Damanik, Schrödinger operators with dynamically defined potentials. Ergodic Theory Dynam. Systems 37(6), 1681–1764 (2017)

    MathSciNet  MATH  Google Scholar 

  27. D. Damanik, J. Fillman, in One-Dimensional Ergodic Schrödinger Operators I. General Theory, vol. 221 of Graduate Studies in Mathematics (American Mathematical Society, Providence, RI, 2022)

    Google Scholar 

  28. D. Damanik, J. Fillman, The almost sure essential spectrum of the doubling map model is connected. Commun. Math. Phys. (to appear)

    Google Scholar 

  29. D. Damanik, J. Fillman, M. Lukic, W. Yessen, Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete Contin. Dyn. Syst. Ser. S 9(4), 1009–1023 (2016)

    MathSciNet  MATH  Google Scholar 

  30. D. Damanik, A. Gorodetski, Spectral and quantum dynamical properties of the weakly coupled Fibonacci Hamiltonian. Comm. Math. Phys. 305(1), 221–277 (2011)

    MathSciNet  MATH  Google Scholar 

  31. D. Damanik, A. Gorodetski, W. Yessen, The Fibonacci Hamiltonian. Invent. Math. 206(3), 629–692 (2016)

    Google Scholar 

  32. D. Damanik, J. Fillman, M. Lukic, W. Yessen, Uniform hyperbolicity for Szegő cocycles and applications to random CMV matrices and the Ising model. Int. Math. Res. Not. 2015(16), 7110–7129 (2015)

    MathSciNet  MATH  Google Scholar 

  33. F. Delyon, B. Souillard, The rotation number for finite difference operators and its properties. Comm. Math. Phys. 89(3), 415–426 (1983)

    MathSciNet  MATH  Google Scholar 

  34. F. Delyon, B. Souillard, Remark on the continuity of the density of states of ergodic finite difference operators. Comm. Math. Phys. 94(2), 289–291 (1984)

    MathSciNet  MATH  Google Scholar 

  35. J. Diestel, A. Spalsbury, in The Joys of Haar Measure, vol. 150 of Graduate Studies in Mathematics (American Mathematical Society, Providence, 2014)

    Google Scholar 

  36. L.H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Comm. Math. Phys. 146(3), 447–482 (1992)

    MathSciNet  MATH  Google Scholar 

  37. H. Furstenberg, in Recurrence in Ergodic Theory and Combinatorial Number Theory (Princeton University Press, Princeton, 1981). M. B. Porter Lectures

    Google Scholar 

  38. F. Gähler, J. Hunton, J. Kellendonk, Integral cohomology of rational projection method patterns. Algebr. Geom. Topol. 13(3), 1661–1708 (2013)

    MathSciNet  MATH  Google Scholar 

  39. U. Grimm, M. Baake, Aperiodic ising models, in The Mathematics of Long-Range Aperiodic Order (Waterloo, ON, 1995), ed. by R.V. Moody, vol. 489 of NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences (Kluwer Academic Publishers, Dordrecht, 1997), pp. 199–237

    Google Scholar 

  40. R. Han, Dry ten Martini problem for the non-self-dual extended Harper’s model. Trans. Amer. Math. Soc. 370(1), 197–217 (2018)

    MathSciNet  MATH  Google Scholar 

  41. A. Hatcher, in Algebraic Topology (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  42. P.J. Higgins, in Introduction to Topological Groups (Cambridge University Press, London, 1974). London Mathematical Society Lecture Note Series, No. 15

    Google Scholar 

  43. H. Hochstadt, An inverse spectral theorem for a Hill’s matrix. Linear Algebra Appl. 57, 21–30 (1984)

    MathSciNet  MATH  Google Scholar 

  44. S. Jitomirskaya, Ergodic Schrödinger operators (on one foot), in Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, ed. by F. Gesztesy, P. Deift, Percy, C. Galvez, P. Perry, W. Schlag, vol. 76 of Proceedings of Symposia in Pure Mathematics (American Mathematical Society, Providence, 2007), pp. 613–647

    Google Scholar 

  45. R. Johnson, J. Moser, The rotation number for almost periodic potentials. Comm. Math. Phys. 84(3), 403–438 (1982)

    MathSciNet  MATH  Google Scholar 

  46. R.A. Johnson, Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients. J. Differ. Equ. 61(1), 54–78 (1986)

    MathSciNet  MATH  Google Scholar 

  47. J. Kaminker, I. Putnam, A proof of the gap labeling conjecture. Michigan Math. J. 51(3), 537–546 (2003)

    MathSciNet  MATH  Google Scholar 

  48. A. Katok, B. Hasselblatt, in Introduction to the Modern Theory of Dynamical Systems, vol. 54 of Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 1995). With a supplementary chapter by Katok and Leonardo Mendoza

    Google Scholar 

  49. Y. Katznelson, in An Introduction to Harmonic Analysis, Cambridge Mathematical Library, 3rd edn. (Cambridge University Press, Cambridge, 2004).

    MATH  Google Scholar 

  50. J. Kellendonk, I. Zois, Rotation numbers, boundary forces and gap labelling. J. Phys. A 38(18), 3937–3946 (2005)

    MathSciNet  MATH  Google Scholar 

  51. W. Kirsch, Random Schrödinger operators and the density of states, in Stochastic Aspects of Classical and Quantum Systems (Marseille, 1983), ed. by S. Albeverio, Ph. Combe, M. Sirugue-Collin, vol. 1109 of Lecture Notes in Mathematics (Springer, Berlin, 1985), pp. 68–102

    Google Scholar 

  52. W. Kirsch, B. Metzger, The integrated density of states for random Schrödinger operators, in Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, ed. by F. Gesztesy, P. Deift, Percy, C. Galvez, P. Perry, W. Schlag, vol. 76 of Proceedings of Symposia in Pure Mathematics (American Mathematical Society, Providence, 2007), pp. 649–696

    Google Scholar 

  53. S. Kotani, Generalized Floquet theory for stationary Schrödinger operators in one dimension. Chaos Solit. Fractals 8(11), 1817–1854 (1997)

    MATH  Google Scholar 

  54. H. Kunz, B. Souillard, Sur le spectre des opérateurs aux différences finies aléatoires. Comm. Math. Phys. 78(2), 201–246 (1980/81)

    MathSciNet  MATH  Google Scholar 

  55. Q. Liu, Y. Qu, X. Yao, The spectrum of period-doubling Hamiltonian. arXiv:2108.13257

    Google Scholar 

  56. W. Liu, X. Yuan, Spectral gaps of almost Mathieu operators in the exponential regime. J. Fractal Geom. 2(1), 1–51 (2015)

    MathSciNet  MATH  Google Scholar 

  57. L.H. Loomis, in An Introduction to Abstract Harmonic Analysis (D. Van Nostrand Company, Toronto, 1953)

    Google Scholar 

  58. J.M. Luck, Cantor spectra and scaling of gap widths in deterministic aperiodic systems. Phys. Rev. B 39, 5834–5849 (1989)

    Google Scholar 

  59. C.A. Marx, S. Jitomirskaya, Dynamics and spectral theory of quasi-periodic Schrödinger-type operators. Ergodic Theory Dynam. Systems 37(8), 2353–2393 (2017)

    MathSciNet  MATH  Google Scholar 

  60. D. Montgomery, L. Zippin, in Topological Transformation Groups (Interscience Publishers, New York, 1955)

    MATH  Google Scholar 

  61. S.A. Morris, in Pontryagin Duality and the Structure of Locally Compact Abelian Groups (Cambridge University Press, Cambridge, 1977). London Mathematical Society Lecture Note Series, No. 29

    Google Scholar 

  62. L. Pastur, A. Figotin, in Spectra of Random and Almost-Periodic Operators, vol. 297 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (Springer-Verlag, Berlin, 1992)

    Google Scholar 

  63. L.A. Pastur, Spectral properties of disordered systems in the one-body approximation. Comm. Math. Phys. 75(2), 179–196 (1980)

    MathSciNet  MATH  Google Scholar 

  64. J. Puig, Cantor spectrum for the almost Mathieu operator. Comm. Math. Phys. 244(2), 297–309 (2004)

    MathSciNet  MATH  Google Scholar 

  65. J. Puig, C. Simó, Analytic families of reducible linear quasi-periodic differential equations. Ergodic Theory Dynam. Systems 26(2), 481–524 (2006)

    MathSciNet  MATH  Google Scholar 

  66. M. Queffélec, in Substitution Dynamical Systems—Spectral Analysis, vol. 1294 of Lecture Notes in Mathematics, 2nd edn. (Springer-Verlag, Berlin, 2010)

    Google Scholar 

  67. L. Raymond, A constructive gap labelling for the discrete schrödinger operator on a quasiperiodic chain (1997).

    Google Scholar 

  68. N. Riedel, Persistence of gaps in the spectrum of certain almost periodic operators. Adv. Theor. Math. Phys. 16(2), 693–712 (2012)

    MathSciNet  MATH  Google Scholar 

  69. W. Rudin, in Fourier Analysis on Groups. Wiley Classics Library (Wiley, New York, 1990). Reprint of the 1962 original, A Wiley-Interscience Publication

    Google Scholar 

  70. S. Schwartzman, Asymptotic cycles. Ann. Math. (2) 66, 270–284 (1957)

    Google Scholar 

  71. B. Simon, On the genericity of nonvanishing instability intervals in Hill’s equation. Ann. Inst. H. Poincaré Sect. A (N.S.) 24(1), 91–93 (1976)

    Google Scholar 

  72. B. Simon, Sturm oscillation and comparison theorems, in Sturm-Liouville Theory (Birkhäuser, Basel, 2005), pp. 29–43

    Google Scholar 

  73. B. Simon, Regularity of the density of states for stochastic Jacobi matrices: a review, in Random Media (Minneapolis, Minn., 1985), vol. 7 of IMA Volumes in Mathematics and Its Applications (Springer, New York, 1987), pp. 245–266

    Google Scholar 

  74. T. Spencer, Ergodic Schrödinger operators, in Analysis, et Cetera, ed. by P.H. Rabinowitz, E. Zehnder (Academic Press, Boston, 1990), pp. 623–637

    Google Scholar 

  75. C. Sturm, Sur les équations différentielles linéaires du second ordre. J. Math. Pures et Appl. de Liouville 1, 106–186 (1836)

    Google Scholar 

  76. C. Sturm, Sur une classe d’équations à différentielles partielles. J. Math. Pures et Appl. de Liouville 1, 375–444 (1836)

    Google Scholar 

  77. G. Teschl, in Jacobi Operators and Completely Integrable Nonlinear Lattices, vol. 72 of Mathematical Surveys and Monographs (American Mathematical Society, Providence, 2000)

    Google Scholar 

  78. A. Van Elst, Gap-labelling theorems for Schrödinger operators on the square and cubic lattice. Rev. Math. Phys. 6(2), 319–342 (1994)

    MathSciNet  MATH  Google Scholar 

  79. P. Walters, in An Introduction to Ergodic Theory, vol. 79 of Graduate Texts in Mathematics (Springer-Verlag, New York, 1982)

    Google Scholar 

  80. A. Zettl, in Sturm-Liouville Theory, vol. 121 of Mathematical Surveys and Monographs (American Mathematical Society, Providence, 2005)

    Google Scholar 

  81. Z. Zhang, Uniform hyperbolicity and its relation with spectral analysis of 1D discrete Schrödinger operators. J. Spectr. Theory 10(4), 1471–1517 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Michael Baake, Franz Gähler, Svetlana Jitomirskaya, Johannes Kellendonk, Andy Putman, Lorenzo Sadun, and Hiro Lee Tanaka for helpful conversations and comments. We also want to thank the American Institute of Mathematics for hospitality and support during a January 2022 visit, during which part of this work was completed. We also gratefully acknowledge support from the Simons Center for Geometry and Physics, Stony Brook University at which some of this work was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Damanik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Damanik, D., Fillman, J. (2023). Gap Labelling for Discrete One-Dimensional Ergodic Schrödinger Operators. In: Brown, M., et al. From Complex Analysis to Operator Theory: A Panorama. Operator Theory: Advances and Applications, vol 291. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-31139-0_14

Download citation

Publish with us

Policies and ethics